/*-----------------------------------------------------------------------*/ /* Low level disk I/O module skeleton for FatFs (C)ChaN, 2014 */ /*-----------------------------------------------------------------------*/ /* If a working storage control module is available, it should be */ /* attached to the FatFs via a glue function rather than modifying it. */ /* This is an example of glue functions to attach various exsisting */ /* storage control modules to the FatFs module with a defined API. */ /*-----------------------------------------------------------------------*/ #include "diskio.h" /* FatFs lower layer API */ #include "aes.h" #include "platform.h" #include "sdmmc.h" #define TYPE_SDCARD 0 #define TYPE_SYSNAND 1 #define TYPE_EMUNAND 2 #define SUBTYPE_CTRN_O 0 #define SUBTYPE_CTRN_N 1 #define SUBTYPE_TWLN 2 #define SUBTYPE_TWLP 3 #define SUBTYPE_NONE 4 typedef struct { DWORD offset; BYTE type; BYTE subtype; } FATpartition; typedef struct { DWORD offset; DWORD mode; BYTE keyslot; } SubtypeDesc; FATpartition DriveInfo[31] = { { 0x000000, TYPE_SDCARD, SUBTYPE_NONE }, // 0 - SDCARD { 0x000000, TYPE_SYSNAND, SUBTYPE_CTRN_O }, // 1 - SYSNAND CTRNAND { 0x000000, TYPE_SYSNAND, SUBTYPE_TWLN }, // 2 - SYSNAND TWLN { 0x000000, TYPE_SYSNAND, SUBTYPE_TWLP }, // 3 - SYSNAND TWLP { 0x000000, TYPE_EMUNAND, SUBTYPE_CTRN_O }, // 4 - EMUNAND0 O3DS CTRNAND { 0x000000, TYPE_EMUNAND, SUBTYPE_TWLN }, // 5 - EMUNAND0 O3DS TWLN { 0x000000, TYPE_EMUNAND, SUBTYPE_TWLP }, // 6 - EMUNAND0 O3DS TWLP { 0x200000, TYPE_EMUNAND, SUBTYPE_CTRN_O }, // 7 - EMUNAND1 O3DS CTRNAND { 0x200000, TYPE_EMUNAND, SUBTYPE_TWLN }, // 8 - EMUNAND1 O3DS TWLN { 0x200000, TYPE_EMUNAND, SUBTYPE_TWLP }, // 9 - EMUNAND1 O3DS TWLP { 0x400000, TYPE_EMUNAND, SUBTYPE_CTRN_O }, // 10 - EMUNAND2 O3DS CTRNAND { 0x400000, TYPE_EMUNAND, SUBTYPE_TWLN }, // 11 - EMUNAND2 O3DS TWLN { 0x400000, TYPE_EMUNAND, SUBTYPE_TWLP }, // 12 - EMUNAND2 O3DS TWLP { 0x600000, TYPE_EMUNAND, SUBTYPE_CTRN_O }, // 13 - EMUNAND3 O3DS CTRNAND { 0x600000, TYPE_EMUNAND, SUBTYPE_TWLN }, // 14 - EMUNAND3 O3DS TWLN { 0x600000, TYPE_EMUNAND, SUBTYPE_TWLP }, // 15 - EMUNAND3 O3DS TWLPSDCARD { 0x000000, TYPE_SYSNAND, SUBTYPE_CTRN_N }, // *1 - SYSNAND CTRNAND { 0x000000, TYPE_SYSNAND, SUBTYPE_TWLN }, // *2 - SYSNAND TWLN { 0x000000, TYPE_SYSNAND, SUBTYPE_TWLP }, // *3 - SYSNAND TWLP { 0x000000, TYPE_EMUNAND, SUBTYPE_CTRN_N }, // *4 - EMUNAND0 N3DS CTRNAND { 0x000000, TYPE_EMUNAND, SUBTYPE_TWLN }, // *5 - EMUNAND0 N3DS TWLN { 0x000000, TYPE_EMUNAND, SUBTYPE_TWLP }, // *6 - EMUNAND0 N3DS TWLP { 0x400000, TYPE_EMUNAND, SUBTYPE_CTRN_N }, // *7 - EMUNAND1 N3DS CTRNAND { 0x400000, TYPE_EMUNAND, SUBTYPE_TWLN }, // *8 - EMUNAND1 N3DS TWLN { 0x400000, TYPE_EMUNAND, SUBTYPE_TWLP }, // *9 - EMUNAND1 N3DS TWLP { 0x800000, TYPE_EMUNAND, SUBTYPE_CTRN_N }, // *10 - EMUNAND2 N3DS CTRNAND { 0x800000, TYPE_EMUNAND, SUBTYPE_TWLN }, // *11 - EMUNAND2 N3DS TWLN { 0x800000, TYPE_EMUNAND, SUBTYPE_TWLP }, // *12 - EMUNAND2 N3DS TWLP { 0xC00000, TYPE_EMUNAND, SUBTYPE_CTRN_N }, // *13 - EMUNAND3 N3DS CTRNAND { 0xC00000, TYPE_EMUNAND, SUBTYPE_TWLN }, // *14 - EMUNAND3 N3DS TWLN { 0xC00000, TYPE_EMUNAND, SUBTYPE_TWLP } // *15 - EMUNAND3 N3DS TWLP }; SubtypeDesc SubTypes[4] = { { 0x05CAE5, AES_CNT_CTRNAND_MODE, 0x4 }, // O3DS CTRNAND { 0x05CAD7, AES_CNT_CTRNAND_MODE, 0x5 }, // N3DS CTRNAND { 0x000097, AES_CNT_TWLNAND_MODE, 0x3 }, // TWLN { 0x04808D, AES_CNT_TWLNAND_MODE, 0x3 } // TWLP }; static bool mode_n3ds = false; /*-----------------------------------------------------------------------*/ /* Get counter for NAND AES decryption */ /*-----------------------------------------------------------------------*/ u32 GetNandCtr(u8* ctr, u32 sector) { // static const char* versions[] = {"4.x", "5.x", "6.x", "7.x", "8.x", "9.x"}; static const u8* version_ctrs[] = { (u8*)0x080D7CAC, (u8*)0x080D858C, (u8*)0x080D748C, (u8*)0x080D740C, (u8*)0x080D74CC, (u8*)0x080D794C }; static const u32 version_ctrs_len = sizeof(version_ctrs) / sizeof(u32); static u8* ctr_start = NULL; if (ctr_start == NULL) { for (u32 i = 0; i < version_ctrs_len; i++) { if (*(u32*)version_ctrs[i] == 0x5C980) { ctr_start = (u8*) version_ctrs[i] + 0x30; } } // If value not in previous list start memory scanning (test range) if (ctr_start == NULL) { for (u8* c = (u8*) 0x080D8FFF; c > (u8*) 0x08000000; c--) { if (*(u32*)c == 0x5C980 && *(u32*)(c + 1) == 0x800005C9) { ctr_start = c + 0x30; break; } } } if (ctr_start == NULL) { return 1; } } // the ctr is stored backwards in memory if (sector >= (0x0B100000 / 0x200)) { // CTRNAND/AGBSAVE region for (u32 i = 0; i < 16; i++) ctr[i] = *(ctr_start + (0xF - i)); } else { // TWL region for (u32 i = 0; i < 16; i++) ctr[i] = *(ctr_start + 0x88 + (0xF - i)); } // increment counter add_ctr(ctr, sector * (0x200/0x10)); return 0; } /*-----------------------------------------------------------------------*/ /* Get Drive Status */ /*-----------------------------------------------------------------------*/ DSTATUS disk_status ( __attribute__((unused)) BYTE pdrv /* Physical drive nmuber to identify the drive */ ) { return RES_OK; } /*-----------------------------------------------------------------------*/ /* Inidialize a Drive */ /*-----------------------------------------------------------------------*/ DSTATUS disk_initialize ( __attribute__((unused)) BYTE pdrv /* Physical drive nmuber to identify the drive */ ) { mode_n3ds = (GetUnitPlatform() == PLATFORM_N3DS); sdmmc_sdcard_init(); return RES_OK; } /*-----------------------------------------------------------------------*/ /* Read Sector(s) */ /*-----------------------------------------------------------------------*/ DRESULT disk_read ( __attribute__((unused)) BYTE pdrv, /* Physical drive nmuber to identify the drive */ BYTE *buff, /* Data buffer to store read data */ DWORD sector, /* Sector address in LBA */ UINT count /* Number of sectors to read */ ) { if ((pdrv > 0) && mode_n3ds) // is this really set at this point? pdrv += 15; BYTE type = DriveInfo[pdrv].type; if (type == TYPE_SDCARD) { if (sdmmc_sdcard_readsectors(sector, count, buff)) { return RES_PARERR; } } else { BYTE subtype = DriveInfo[pdrv].subtype; DWORD isector = SubTypes[subtype].offset + sector; DWORD mode = SubTypes[subtype].mode; BYTE ctr[16] __attribute__((aligned(32))); if (type == TYPE_SYSNAND) { if (sdmmc_nand_readsectors(isector, count, buff)) return RES_PARERR; } else if (sdmmc_sdcard_readsectors(DriveInfo[pdrv].offset + isector, count, buff)) { return RES_PARERR; } GetNandCtr(ctr, isector); use_aeskey(SubTypes[subtype].keyslot); for (UINT s = 0; s < count; s++) { for (UINT b = 0x0; b < 0x200; b += 0x10, buff += 0x10) { set_ctr(ctr); aes_decrypt((void*) buff, (void*) buff, 1, mode); add_ctr(ctr, 0x1); } } } return RES_OK; } /*-----------------------------------------------------------------------*/ /* Write Sector(s) */ /*-----------------------------------------------------------------------*/ #if _USE_WRITE DRESULT disk_write ( __attribute__((unused)) BYTE pdrv, /* Physical drive nmuber to identify the drive */ const BYTE *buff, /* Data to be written */ DWORD sector, /* Sector address in LBA */ UINT count /* Number of sectors to write */ ) { if ((pdrv > 0) && mode_n3ds) pdrv += 15; if (DriveInfo[pdrv].type == TYPE_SDCARD) { if (sdmmc_sdcard_writesectors(sector, count, (BYTE *)buff)) { return RES_PARERR; } } else { BYTE subtype = DriveInfo[pdrv].subtype; DWORD isector = SubTypes[subtype].offset + sector; DWORD mode = SubTypes[subtype].mode; BYTE ctr[16] __attribute__((aligned(32))); GetNandCtr(ctr, isector); use_aeskey(SubTypes[subtype].keyslot); for (UINT s = 0; s < count; s++) { for (UINT b = 0x0; b < 0x200; b += 0x10, buff += 0x10) { set_ctr(ctr); aes_decrypt((void*) buff, (void*) buff, 1, mode); add_ctr(ctr, 0x1); } } /*if (type == TYPE_SYSNAND) { if (sdmmc_nand_writesectors(isector, count, buff)) return RES_PARERR; } else if (sdmmc_sdcard_writesectors(DriveInfo[pdrv].offset + isector, count, buff)) { return RES_PARERR; }*/ // stubbed, better be safe! } return RES_OK; } #endif /*-----------------------------------------------------------------------*/ /* Miscellaneous Functions */ /*-----------------------------------------------------------------------*/ #if _USE_IOCTL DRESULT disk_ioctl ( __attribute__((unused)) BYTE pdrv, /* Physical drive nmuber (0..) */ __attribute__((unused)) BYTE cmd, /* Control code */ __attribute__((unused)) void *buff /* Buffer to send/receive control data */ ) { if ((pdrv > 0) && mode_n3ds) pdrv += 15; switch (cmd) { case GET_SECTOR_SIZE: *((DWORD*) buff) = 0x200; return RES_OK; case GET_SECTOR_COUNT: *((DWORD*) buff) = getMMCDevice((DriveInfo[pdrv].type == TYPE_SDCARD) ? 1 : 0)->total_size; return RES_OK; case GET_BLOCK_SIZE: *((DWORD*) buff) = 0x2000; // return (DriveInfo[pdrv].type == TYPE_SDCARD) ? RES_OK : RES_PARERR; return RES_OK; case CTRL_SYNC: // nothing to do here - the disk_write function handles that return RES_OK; } return RES_OK; } #endif