diff --git a/bin/models/upconv_7_anime_style_art_rgb/info.json b/bin/models/upconv_7_anime_style_art_rgb/info.json index a90cca2..ea2ce90 100644 --- a/bin/models/upconv_7_anime_style_art_rgb/info.json +++ b/bin/models/upconv_7_anime_style_art_rgb/info.json @@ -1 +1,4 @@ -{"name":"UpRGB","arch_name":"upconv_7","channels":3,"resize":true,"scale_factor":2,"offset":12} \ No newline at end of file +{"name":"UpRGB","arch_name":"upconv_7","has_noise_scale":true,"channels":3, +"scale_factor":2,"offset":14, +"scale_factor_noise":1,"offset_noise":7 +} \ No newline at end of file diff --git a/bin/models/upconv_7_anime_style_art_rgb/noise1_scale2.0x_model.prototxt b/bin/models/upconv_7_anime_style_art_rgb/noise1_scale2.0x_model.prototxt new file mode 100644 index 0000000..ac5f684 --- /dev/null +++ b/bin/models/upconv_7_anime_style_art_rgb/noise1_scale2.0x_model.prototxt @@ -0,0 +1,188 @@ +name: "upconv_7" +layer { + name: "input" + type: "Input" + top: "input" + input_param { shape: { dim: 1 dim: 3 dim: 142 dim: 142 } } +} +layer { + name: "conv1_layer" + type: "Convolution" + bottom: "input" + top: "conv1" + convolution_param { + num_output: 16 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv1_relu_layer" + type: "ReLU" + bottom: "conv1" + top: "conv1" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv2_layer" + type: "Convolution" + bottom: "conv1" + top: "conv2" + convolution_param { + num_output: 32 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv2_relu_layer" + type: "ReLU" + bottom: "conv2" + top: "conv2" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv3_layer" + type: "Convolution" + bottom: "conv2" + top: "conv3" + convolution_param { + num_output: 64 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv3_relu_layer" + type: "ReLU" + bottom: "conv3" + top: "conv3" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv4_layer" + type: "Convolution" + bottom: "conv3" + top: "conv4" + convolution_param { + num_output: 128 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv4_relu_layer" + type: "ReLU" + bottom: "conv4" + top: "conv4" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv5_layer" + type: "Convolution" + bottom: "conv4" + top: "conv5" + convolution_param { + num_output: 128 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv5_relu_layer" + type: "ReLU" + bottom: "conv5" + top: "conv5" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv6_layer" + type: "Convolution" + bottom: "conv5" + top: "conv6" + convolution_param { + num_output: 256 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv6_relu_layer" + type: "ReLU" + bottom: "conv6" + top: "conv6" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv7_layer" + type: "Deconvolution" + bottom: "conv6" + top: "conv7" + convolution_param { + num_output: 3 + kernel_size: 4 + stride: 2 + pad: 3 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "target" + type: "MemoryData" + top: "target" + top: "dummy_label2" + memory_data_param { + batch_size: 1 + channels: 3 + height: 142 + width: 142 + } + include: { phase: TRAIN } +} +layer { + name: "loss" + type: "EuclideanLoss" + bottom: "conv7" + bottom: "target" + top: "loss" + include: { phase: TRAIN } +} diff --git a/bin/models/upconv_7_anime_style_art_rgb/noise2_scale2.0x_model.prototxt b/bin/models/upconv_7_anime_style_art_rgb/noise2_scale2.0x_model.prototxt new file mode 100644 index 0000000..ac5f684 --- /dev/null +++ b/bin/models/upconv_7_anime_style_art_rgb/noise2_scale2.0x_model.prototxt @@ -0,0 +1,188 @@ +name: "upconv_7" +layer { + name: "input" + type: "Input" + top: "input" + input_param { shape: { dim: 1 dim: 3 dim: 142 dim: 142 } } +} +layer { + name: "conv1_layer" + type: "Convolution" + bottom: "input" + top: "conv1" + convolution_param { + num_output: 16 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv1_relu_layer" + type: "ReLU" + bottom: "conv1" + top: "conv1" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv2_layer" + type: "Convolution" + bottom: "conv1" + top: "conv2" + convolution_param { + num_output: 32 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv2_relu_layer" + type: "ReLU" + bottom: "conv2" + top: "conv2" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv3_layer" + type: "Convolution" + bottom: "conv2" + top: "conv3" + convolution_param { + num_output: 64 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv3_relu_layer" + type: "ReLU" + bottom: "conv3" + top: "conv3" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv4_layer" + type: "Convolution" + bottom: "conv3" + top: "conv4" + convolution_param { + num_output: 128 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv4_relu_layer" + type: "ReLU" + bottom: "conv4" + top: "conv4" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv5_layer" + type: "Convolution" + bottom: "conv4" + top: "conv5" + convolution_param { + num_output: 128 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv5_relu_layer" + type: "ReLU" + bottom: "conv5" + top: "conv5" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv6_layer" + type: "Convolution" + bottom: "conv5" + top: "conv6" + convolution_param { + num_output: 256 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv6_relu_layer" + type: "ReLU" + bottom: "conv6" + top: "conv6" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv7_layer" + type: "Deconvolution" + bottom: "conv6" + top: "conv7" + convolution_param { + num_output: 3 + kernel_size: 4 + stride: 2 + pad: 3 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "target" + type: "MemoryData" + top: "target" + top: "dummy_label2" + memory_data_param { + batch_size: 1 + channels: 3 + height: 142 + width: 142 + } + include: { phase: TRAIN } +} +layer { + name: "loss" + type: "EuclideanLoss" + bottom: "conv7" + bottom: "target" + top: "loss" + include: { phase: TRAIN } +} diff --git a/bin/models/upconv_7_anime_style_art_rgb/noise3_scale2.0x_model.prototxt b/bin/models/upconv_7_anime_style_art_rgb/noise3_scale2.0x_model.prototxt new file mode 100644 index 0000000..ac5f684 --- /dev/null +++ b/bin/models/upconv_7_anime_style_art_rgb/noise3_scale2.0x_model.prototxt @@ -0,0 +1,188 @@ +name: "upconv_7" +layer { + name: "input" + type: "Input" + top: "input" + input_param { shape: { dim: 1 dim: 3 dim: 142 dim: 142 } } +} +layer { + name: "conv1_layer" + type: "Convolution" + bottom: "input" + top: "conv1" + convolution_param { + num_output: 16 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv1_relu_layer" + type: "ReLU" + bottom: "conv1" + top: "conv1" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv2_layer" + type: "Convolution" + bottom: "conv1" + top: "conv2" + convolution_param { + num_output: 32 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv2_relu_layer" + type: "ReLU" + bottom: "conv2" + top: "conv2" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv3_layer" + type: "Convolution" + bottom: "conv2" + top: "conv3" + convolution_param { + num_output: 64 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv3_relu_layer" + type: "ReLU" + bottom: "conv3" + top: "conv3" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv4_layer" + type: "Convolution" + bottom: "conv3" + top: "conv4" + convolution_param { + num_output: 128 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv4_relu_layer" + type: "ReLU" + bottom: "conv4" + top: "conv4" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv5_layer" + type: "Convolution" + bottom: "conv4" + top: "conv5" + convolution_param { + num_output: 128 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv5_relu_layer" + type: "ReLU" + bottom: "conv5" + top: "conv5" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv6_layer" + type: "Convolution" + bottom: "conv5" + top: "conv6" + convolution_param { + num_output: 256 + kernel_size: 3 + stride: 1 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "conv6_relu_layer" + type: "ReLU" + bottom: "conv6" + top: "conv6" + relu_param { + negative_slope: 0.1 + } +} +layer { + name: "conv7_layer" + type: "Deconvolution" + bottom: "conv6" + top: "conv7" + convolution_param { + num_output: 3 + kernel_size: 4 + stride: 2 + pad: 3 + weight_filler { + type: "gaussian" + std: 0.01 + } + } +} +layer { + name: "target" + type: "MemoryData" + top: "target" + top: "dummy_label2" + memory_data_param { + batch_size: 1 + channels: 3 + height: 142 + width: 142 + } + include: { phase: TRAIN } +} +layer { + name: "loss" + type: "EuclideanLoss" + bottom: "conv7" + bottom: "target" + top: "loss" + include: { phase: TRAIN } +} diff --git a/bin/models/upconv_7_anime_style_art_rgb/scale2.0x_model.prototxt b/bin/models/upconv_7_anime_style_art_rgb/scale2.0x_model.prototxt index 184c049..ac5f684 100644 --- a/bin/models/upconv_7_anime_style_art_rgb/scale2.0x_model.prototxt +++ b/bin/models/upconv_7_anime_style_art_rgb/scale2.0x_model.prototxt @@ -11,7 +11,7 @@ layer { bottom: "input" top: "conv1" convolution_param { - num_output: 32 + num_output: 16 kernel_size: 3 stride: 1 weight_filler { @@ -83,7 +83,7 @@ layer { bottom: "conv3" top: "conv4" convolution_param { - num_output: 64 + num_output: 128 kernel_size: 3 stride: 1 weight_filler { @@ -131,7 +131,7 @@ layer { bottom: "conv5" top: "conv6" convolution_param { - num_output: 128 + num_output: 256 kernel_size: 3 stride: 1 weight_filler { @@ -158,7 +158,7 @@ layer { num_output: 3 kernel_size: 4 stride: 2 - pad: 1 + pad: 3 weight_filler { type: "gaussian" std: 0.01