import os import os.path as osp import sys import google.protobuf as pb from argparse import ArgumentParser import numpy as np import shutil import caffe from caffe.proto import caffe_pb2 sys.path.append('waifu2x-chainer') from lib import srcnn import chainer def main(): caffe.set_mode_cpu() model_name = 'UpResNet10' model_dir = 'waifu2x-chainer/models/{}'.format(model_name.lower()) model_class = srcnn.archs[model_name] for filename in os.listdir(model_dir): basename, ext = os.path.splitext(filename) if ext == '.npz': model_path = os.path.join(model_dir, filename) print(model_path) channels = 3 if 'rgb' in filename else 1 model = model_class(channels) chainer.serializers.load_npz(model_path, model) model.to_cpu() params = {} for path, param in model.namedparams(): params[path] = param.array net = caffe.Net('upresnet10_3.prototxt', caffe.TEST) for key in net.params: l = len(net.params[key]) net.params[key][0].data[...] = params[key + '/W'] if l >= 2: net.params[key][1].data[...] = params[key + '/b'] input_data = np.empty(net.blobs['input'].data.shape, dtype=np.float32) input_data[...] = np.random.random_sample(net.blobs['input'].data.shape) net.blobs['input'].data[...] = input_data ret = net.forward() input_data = np.empty(net.blobs['input'].data.shape, dtype=np.float32) input_data[...] = np.random.random_sample(net.blobs['input'].data.shape) net.blobs['input'].data[...] = input_data ret = net.forward() batch_y = model(input_data) print(batch_y.array - ret['/conv_post']) if __name__ == '__main__': caffe.init_log(3) main()