mirror of
https://github.com/d0k3/GodMode9.git
synced 2025-06-26 13:42:47 +00:00
This allows chainloading Luma outside of boot9strap Requires a good aeskeydb.bin, like MD5 A5B28945A7C051D7A0CD18AF0E580D1B
605 lines
24 KiB
C
605 lines
24 KiB
C
#include "nand.h"
|
|
#include "fsdrive.h"
|
|
#include "unittype.h"
|
|
#include "keydb.h"
|
|
#include "aes.h"
|
|
#include "sha.h"
|
|
#include "fatmbr.h"
|
|
#include "sdmmc.h"
|
|
#include "image.h"
|
|
|
|
|
|
#define KEY95_SHA256 ((IS_DEVKIT) ? slot0x11Key95dev_sha256 : slot0x11Key95_sha256)
|
|
#define SECTOR_SHA256 ((IS_DEVKIT) ? sector0x96dev_sha256 : sector0x96_sha256)
|
|
|
|
// see: https://www.3dbrew.org/wiki/NCSD#NCSD_header
|
|
static const u32 np_keyslots[9][4] = { // [NP_TYPE][NP_SUBTYPE]
|
|
{ 0xFF, 0xFF, 0xFF, 0xFF }, // none
|
|
{ 0xFF, 0x03, 0x04, 0x05 }, // standard
|
|
{ 0xFF, 0x03, 0x04, 0x05 }, // FAT (custom, not in NCSD)
|
|
{ 0xFF, 0xFF, 0x06, 0xFF }, // FIRM
|
|
{ 0xFF, 0xFF, 0x07, 0xFF }, // AGBSAVE
|
|
{ 0xFF, 0xFF, 0xFF, 0xFF }, // NCSD (custom)
|
|
{ 0xFF, 0xFF, 0xFF, 0xFF }, // D0K3 (custom)
|
|
{ 0xFF, 0xFF, 0xFF, 0x11 }, // SECRET (custom)
|
|
{ 0xFF, 0xFF, 0xFF, 0xFF } // BONUS (custom)
|
|
};
|
|
|
|
static u8 slot0x05KeyY[0x10] = { 0x00 }; // need to load this from FIRM0 / external file
|
|
static const u8 slot0x05KeyY_sha256[0x20] = { // hash for slot0x05KeyY (16 byte)
|
|
0x98, 0x24, 0x27, 0x14, 0x22, 0xB0, 0x6B, 0xF2, 0x10, 0x96, 0x9C, 0x36, 0x42, 0x53, 0x7C, 0x86,
|
|
0x62, 0x22, 0x5C, 0xFD, 0x6F, 0xAE, 0x9B, 0x0A, 0x85, 0xA5, 0xCE, 0x21, 0xAA, 0xB6, 0xC8, 0x4D
|
|
};
|
|
|
|
static const u8 slot0x11Key95_sha256[0x20] = { // slot0x11Key95 hash (first 16 byte of sector0x96)
|
|
0xBA, 0xC1, 0x40, 0x9C, 0x6E, 0xE4, 0x1F, 0x04, 0xAA, 0xC4, 0xE2, 0x09, 0x5C, 0xE9, 0x4F, 0x78,
|
|
0x6C, 0x78, 0x5F, 0xAC, 0xEC, 0x7E, 0xC0, 0x11, 0x26, 0x9D, 0x4E, 0x47, 0xB3, 0x64, 0xC4, 0xA5
|
|
};
|
|
|
|
static const u8 slot0x11Key95dev_sha256[0x20] = { // slot0x11Key95 hash (first 16 byte of sector0x96)
|
|
0x97, 0x0E, 0x52, 0x29, 0x63, 0x19, 0x47, 0x51, 0x15, 0xD8, 0x02, 0x7A, 0x22, 0x0F, 0x58, 0x15,
|
|
0xD7, 0x6C, 0xE9, 0xAD, 0xE7, 0xFE, 0x9A, 0x25, 0x4E, 0x4A, 0x0C, 0x82, 0x67, 0xB5, 0x4A, 0x7B
|
|
};
|
|
|
|
// from: https://github.com/AuroraWright/SafeA9LHInstaller/blob/master/source/installer.c#L9-L17
|
|
static const u8 sector0x96_sha256[0x20] = { // hash for legit sector 0x96 (different on A9LH)
|
|
0x82, 0xF2, 0x73, 0x0D, 0x2C, 0x2D, 0xA3, 0xF3, 0x01, 0x65, 0xF9, 0x87, 0xFD, 0xCC, 0xAC, 0x5C,
|
|
0xBA, 0xB2, 0x4B, 0x4E, 0x5F, 0x65, 0xC9, 0x81, 0xCD, 0x7B, 0xE6, 0xF4, 0x38, 0xE6, 0xD9, 0xD3
|
|
};
|
|
|
|
// from: https://github.com/SciresM/CTRAesEngine/tree/master/CTRAesEngine/Resources/_byte
|
|
static const u8 sector0x96dev_sha256[0x20] = { // hash for legit sector 0x96 (different on A9LH)
|
|
0xB2, 0x91, 0xD9, 0xB1, 0x33, 0x05, 0x79, 0x0D, 0x47, 0xC6, 0x06, 0x98, 0x4C, 0x67, 0xC3, 0x70,
|
|
0x09, 0x54, 0xE3, 0x85, 0xDE, 0x47, 0x55, 0xAF, 0xC6, 0xCB, 0x1D, 0x8D, 0xC7, 0x84, 0x5A, 0x64
|
|
};
|
|
|
|
static u8 CtrNandCtr[16];
|
|
static u8 TwlNandCtr[16];
|
|
static u8 OtpSha256[32] = { 0 };
|
|
|
|
static u32 emunand_base_sector = 0x000000;
|
|
|
|
|
|
bool GetOtp0x90(void* otp0x90, u32 len)
|
|
{
|
|
// a short helper function for crypto setup outside of sighax
|
|
u8 __attribute__((aligned(32))) otp_key[0x10];
|
|
u8 __attribute__((aligned(32))) otp_iv[0x10];
|
|
|
|
len = len - (len % 0x10);
|
|
if (len > 0x90) len = 0x90;
|
|
memcpy(otp0x90, (u8*) 0x01FFB800, len);
|
|
if ((LoadKeyFromFile(otp_key, 0x11, 'N', "OTP") == 0) &&
|
|
((LoadKeyFromFile(otp_iv, 0x11, 'I', "IVOTP") == 0) ||
|
|
(LoadKeyFromFile(otp_iv, 0x11, 'I', "OTP") == 0))) {
|
|
setup_aeskey(0x11, otp_key);
|
|
use_aeskey(0x11);
|
|
cbc_encrypt(otp0x90, otp0x90, len / 0x10, AES_CNT_TITLEKEY_ENCRYPT_MODE, otp_iv);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool InitNandCrypto(bool init_full)
|
|
{
|
|
// part #0: KeyX / KeyY for secret sector 0x96
|
|
// on a9lh this MUST be run before accessing the SHA register in any other way
|
|
if (IS_UNLOCKED) { // if OTP is unlocked
|
|
// see: https://www.3dbrew.org/wiki/OTP_Registers
|
|
sha_quick(OtpSha256, (u8*) 0x10012000, 0x90, SHA256_MODE);
|
|
} else if (IS_A9LH) { // for a9lh
|
|
// store the current SHA256 from register
|
|
memcpy(OtpSha256, (void*) REG_SHAHASH, 32);
|
|
}
|
|
if (!CheckSector0x96Crypto()) { // if all else fails...
|
|
u8 __attribute__((aligned(32))) otp0x90[0x90];
|
|
if (GetOtp0x90(otp0x90, 0x90))
|
|
sha_quick(OtpSha256, otp0x90, 0x90, SHA256_MODE);
|
|
}
|
|
|
|
// part #1: Get NAND CID, set up TWL/CTR counter
|
|
u32 NandCid[4];
|
|
u8 shasum[32];
|
|
|
|
sdmmc_sdcard_init();
|
|
sdmmc_get_cid(1, NandCid);
|
|
sha_quick(shasum, (u8*) NandCid, 16, SHA256_MODE);
|
|
memcpy(CtrNandCtr, shasum, 16);
|
|
sha_quick(shasum, (u8*) NandCid, 16, SHA1_MODE);
|
|
for(u32 i = 0; i < 16; i++) // little endian and reversed order
|
|
TwlNandCtr[i] = shasum[15-i];
|
|
|
|
// part #2: TWL KEY (if not already set up)
|
|
// see: https://www.3dbrew.org/wiki/Memory_layout#ARM9_ITCM
|
|
if (GetNandPartitionInfo(NULL, NP_TYPE_FAT, NP_SUBTYPE_TWL, 0, NAND_SYSNAND) != 0) {
|
|
u64 TwlCustId = 0; // TWL customer ID (different for devkits)
|
|
if (!IS_DEVKIT) TwlCustId = 0x80000000ULL | (*(vu64 *)0x01FFB808 ^ 0x8C267B7B358A6AFULL);
|
|
else if (IS_UNLOCKED) TwlCustId = (*(vu64*)0x10012000);
|
|
if (!TwlCustId && IS_DEVKIT) {
|
|
u64 __attribute__((aligned(32))) otp0x10[2];
|
|
if (GetOtp0x90(otp0x10, 0x10)) TwlCustId = *otp0x10;
|
|
}
|
|
|
|
if (TwlCustId) { // give up if TwlCustId not found
|
|
u32 TwlKey0x03Y[4] __attribute__((aligned(32)));
|
|
u32 TwlKey0x03X[4] __attribute__((aligned(32)));
|
|
|
|
if (IS_DEVKIT) {
|
|
TwlKey0x03X[1] = 0xEE7A4B1E;
|
|
TwlKey0x03X[2] = 0xAF42C08B;
|
|
LoadKeyFromFile(TwlKey0x03Y, 0x03, 'Y', NULL);
|
|
} else {
|
|
TwlKey0x03X[1] = *(vu32*)0x01FFD3A8; // "NINT"
|
|
TwlKey0x03X[2] = *(vu32*)0x01FFD3AC; // "ENDO"
|
|
memcpy(TwlKey0x03Y, (u8*) 0x01FFD3C8, 16);
|
|
}
|
|
|
|
TwlKey0x03X[0] = (u32) (TwlCustId>>0);
|
|
TwlKey0x03X[3] = (u32) (TwlCustId>>32);
|
|
TwlKey0x03Y[3] = 0xE1A00005;
|
|
|
|
setup_aeskeyX(0x03, TwlKey0x03X);
|
|
setup_aeskeyY(0x03, TwlKey0x03Y);
|
|
use_aeskey(0x03);
|
|
|
|
if (init_full) { // full init
|
|
vu32 *RegKey0x01X = ®_AESKEY0123[((0x30u * 0x01) + 0x10u)/4u];
|
|
RegKey0x01X[2] = (u32) (TwlCustId>>32);
|
|
RegKey0x01X[3] = (u32) (TwlCustId>>0);
|
|
|
|
setup_aeskeyX(0x02, (u8*)0x01FFD398);
|
|
if (IS_DEVKIT) {
|
|
u32 TwlKey0x02Y[4] __attribute__((aligned(32)));
|
|
LoadKeyFromFile(TwlKey0x02Y, 0x02, 'Y', NULL);
|
|
setup_aeskeyY(0x02, TwlKey0x02Y);
|
|
} else setup_aeskeyY(0x02, (u8*)0x01FFD220);
|
|
use_aeskey(0x02);
|
|
|
|
if (IS_UNLOCKED)
|
|
(*(vu64*)0x10012100) = TwlCustId;
|
|
}
|
|
}
|
|
}
|
|
|
|
// part #3: CTRNAND N3DS KEY (if not set up)
|
|
if (GetNandPartitionInfo(NULL, NP_TYPE_FAT, NP_SUBTYPE_CTR, 0, NAND_SYSNAND) != 0)
|
|
LoadKeyFromFile(slot0x05KeyY, 0x05, 'Y', NULL);
|
|
|
|
// part #4: AGBSAVE CMAC KEY (set up on A9LH and SigHax)
|
|
if (IS_A9LH || IS_SIGHAX)
|
|
LoadKeyFromFile(NULL, 0x24, 'Y', NULL);
|
|
|
|
// part #5: FULL INIT
|
|
if (init_full) InitKeyDb();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool CheckSlot0x05Crypto(void)
|
|
{
|
|
// step #1 - check the slot0x05KeyY SHA-256
|
|
if (sha_cmp(slot0x05KeyY_sha256, slot0x05KeyY, 16, SHA256_MODE) == 0)
|
|
return true;
|
|
|
|
// step #2 - check actual presence of CTRNAND FAT
|
|
if (GetNandPartitionInfo(NULL, NP_TYPE_STD, NP_SUBTYPE_CTR_N, 0, NAND_SYSNAND) == 0)
|
|
return true;
|
|
|
|
// failed if we arrive here
|
|
return false;
|
|
}
|
|
|
|
bool CheckSector0x96Crypto(void)
|
|
{
|
|
u8 buffer[0x200];
|
|
ReadNandSectors(buffer, SECTOR_SECRET, 1, 0x11, NAND_SYSNAND);
|
|
return (sha_cmp(KEY95_SHA256, buffer, 16, SHA256_MODE) == 0);
|
|
}
|
|
|
|
bool CheckGenuineNandNcsd(void)
|
|
{
|
|
u8 gen_o3ds_hash[0x20] = {
|
|
0xCD, 0xB8, 0x2B, 0xF3, 0xE0, 0xC7, 0xA3, 0xC7, 0x58, 0xDF, 0xDC, 0x4E, 0x27, 0x63, 0xBE, 0xE8,
|
|
0xBE, 0x2B, 0x1D, 0xF4, 0xBA, 0x97, 0xAF, 0x7F, 0x19, 0x70, 0x99, 0xDB, 0x66, 0xF7, 0x2F, 0xD7
|
|
};
|
|
u8 gen_n3ds_hash[0x20] = {
|
|
0x49, 0xB7, 0x4A, 0xF1, 0xFD, 0xB7, 0xCF, 0x5B, 0x76, 0x8F, 0xA2, 0x94, 0x0D, 0xB2, 0xB3, 0xE2,
|
|
0xA4, 0xBD, 0x25, 0x03, 0x06, 0x03, 0x47, 0x0B, 0x24, 0x5A, 0x86, 0x6A, 0x43, 0x60, 0xBC, 0x84,
|
|
};
|
|
|
|
u8 gen_hdr[0x100];
|
|
if ((ReadNandBytes(gen_hdr, 0x100, 0x100, 0xFF, NAND_SYSNAND) != 0) ||
|
|
(ReadNandBytes(gen_hdr + 0xBE, 0x1BE, 0x42, 0x03, NAND_SYSNAND) != 0))
|
|
return false;
|
|
|
|
return (sha_cmp((IS_O3DS) ? gen_o3ds_hash : gen_n3ds_hash, gen_hdr, 0x100, SHA256_MODE) == 0);
|
|
}
|
|
|
|
void CryptNand(void* buffer, u32 sector, u32 count, u32 keyslot)
|
|
{
|
|
u32 mode = (keyslot != 0x03) ? AES_CNT_CTRNAND_MODE : AES_CNT_TWLNAND_MODE; // somewhat hacky
|
|
u8 ctr[16] __attribute__((aligned(32)));
|
|
u32 blocks = count * (0x200 / 0x10);
|
|
|
|
// copy NAND CTR and increment it
|
|
memcpy(ctr, (keyslot != 0x03) ? CtrNandCtr : TwlNandCtr, 16); // hacky again
|
|
add_ctr(ctr, sector * (0x200 / 0x10));
|
|
|
|
// decrypt the data
|
|
use_aeskey(keyslot);
|
|
ctr_decrypt((void*) buffer, (void*) buffer, blocks, mode, ctr);
|
|
}
|
|
|
|
void CryptSector0x96(void* buffer, bool encrypt)
|
|
{
|
|
u32 mode = encrypt ? AES_CNT_ECB_ENCRYPT_MODE : AES_CNT_ECB_DECRYPT_MODE;
|
|
|
|
// setup the key
|
|
setup_aeskeyX(0x11, OtpSha256);
|
|
setup_aeskeyY(0x11, OtpSha256 + 16);
|
|
|
|
// decrypt the sector
|
|
use_aeskey(0x11);
|
|
ecb_decrypt((void*) buffer, (void*) buffer, 0x200 / AES_BLOCK_SIZE, mode);
|
|
}
|
|
|
|
int ReadNandBytes(void* buffer, u64 offset, u64 count, u32 keyslot, u32 nand_src)
|
|
{
|
|
if (!(offset % 0x200) && !(count % 0x200)) { // aligned data -> simple case
|
|
// simple wrapper function for ReadNandSectors(...)
|
|
return ReadNandSectors(buffer, offset / 0x200, count / 0x200, keyslot, nand_src);
|
|
} else { // misaligned data -> -___-
|
|
u8* buffer8 = (u8*) buffer;
|
|
u8 l_buffer[0x200];
|
|
int errorcode = 0;
|
|
if (offset % 0x200) { // handle misaligned offset
|
|
u32 offset_fix = 0x200 - (offset % 0x200);
|
|
errorcode = ReadNandSectors(l_buffer, offset / 0x200, 1, keyslot, nand_src);
|
|
if (errorcode != 0) return errorcode;
|
|
memcpy(buffer8, l_buffer + 0x200 - offset_fix, min(offset_fix, count));
|
|
if (count <= offset_fix) return 0;
|
|
offset += offset_fix;
|
|
buffer8 += offset_fix;
|
|
count -= offset_fix;
|
|
} // offset is now aligned and part of the data is read
|
|
if (count >= 0x200) { // otherwise this is misaligned and will be handled below
|
|
errorcode = ReadNandSectors(buffer8, offset / 0x200, count / 0x200, keyslot, nand_src);
|
|
if (errorcode != 0) return errorcode;
|
|
}
|
|
if (count % 0x200) { // handle misaligned count
|
|
u32 count_fix = count % 0x200;
|
|
errorcode = ReadNandSectors(l_buffer, (offset + count) / 0x200, 1, keyslot, nand_src);
|
|
if (errorcode != 0) return errorcode;
|
|
memcpy(buffer8 + count - count_fix, l_buffer, count_fix);
|
|
}
|
|
return errorcode;
|
|
}
|
|
}
|
|
|
|
int WriteNandBytes(const void* buffer, u64 offset, u64 count, u32 keyslot, u32 nand_dst)
|
|
{
|
|
if (!(offset % 0x200) && !(count % 0x200)) { // aligned data -> simple case
|
|
// simple wrapper function for WriteNandSectors(...)
|
|
return WriteNandSectors(buffer, offset / 0x200, count / 0x200, keyslot, nand_dst);
|
|
} else { // misaligned data -> -___-
|
|
u8* buffer8 = (u8*) buffer;
|
|
u8 l_buffer[0x200];
|
|
int errorcode = 0;
|
|
if (offset % 0x200) { // handle misaligned offset
|
|
u32 offset_fix = 0x200 - (offset % 0x200);
|
|
errorcode = ReadNandSectors(l_buffer, offset / 0x200, 1, keyslot, nand_dst);
|
|
if (errorcode != 0) return errorcode;
|
|
memcpy(l_buffer + 0x200 - offset_fix, buffer8, min(offset_fix, count));
|
|
errorcode = WriteNandSectors((const u8*) l_buffer, offset / 0x200, 1, keyslot, nand_dst);
|
|
if (errorcode != 0) return errorcode;
|
|
if (count <= offset_fix) return 0;
|
|
offset += offset_fix;
|
|
buffer8 += offset_fix;
|
|
count -= offset_fix;
|
|
} // offset is now aligned and part of the data is written
|
|
if (count >= 0x200) { // otherwise this is misaligned and will be handled below
|
|
errorcode = WriteNandSectors(buffer8, offset / 0x200, count / 0x200, keyslot, nand_dst);
|
|
if (errorcode != 0) return errorcode;
|
|
}
|
|
if (count % 0x200) { // handle misaligned count
|
|
u32 count_fix = count % 0x200;
|
|
errorcode = ReadNandSectors(l_buffer, (offset + count) / 0x200, 1, keyslot, nand_dst);
|
|
if (errorcode != 0) return errorcode;
|
|
memcpy(l_buffer, buffer8 + count - count_fix, count_fix);
|
|
errorcode = WriteNandSectors((const u8*) l_buffer, (offset + count) / 0x200, 1, keyslot, nand_dst);
|
|
if (errorcode != 0) return errorcode;
|
|
}
|
|
return errorcode;
|
|
}
|
|
}
|
|
|
|
int ReadNandSectors(void* buffer, u32 sector, u32 count, u32 keyslot, u32 nand_src)
|
|
{
|
|
u8* buffer8 = (u8*) buffer;
|
|
if (!count) return 0; // <--- just to be safe
|
|
if (nand_src == NAND_EMUNAND) { // EmuNAND
|
|
int errorcode = 0;
|
|
if ((sector == 0) && (emunand_base_sector % 0x200000 == 0)) { // GW EmuNAND header handling
|
|
errorcode = sdmmc_sdcard_readsectors(emunand_base_sector + getMMCDevice(0)->total_size, 1, buffer8);
|
|
if ((keyslot < 0x40) && (keyslot != 0x11) && !errorcode) CryptNand(buffer8, 0, 1, keyslot);
|
|
sector = 1;
|
|
count--;
|
|
buffer8 += 0x200;
|
|
}
|
|
errorcode = (!errorcode && count) ? sdmmc_sdcard_readsectors(emunand_base_sector + sector, count, buffer8) : errorcode;
|
|
if (errorcode) return errorcode;
|
|
} else if (nand_src == NAND_IMGNAND) { // ImgNAND
|
|
int errorcode = ReadImageSectors(buffer8, sector, count);
|
|
if (errorcode) return errorcode;
|
|
} else if (nand_src == NAND_SYSNAND) { // SysNAND
|
|
int errorcode = sdmmc_nand_readsectors(sector, count, buffer8);
|
|
if (errorcode) return errorcode;
|
|
} else if (nand_src == NAND_ZERONAND) { // zero NAND (good for XORpads)
|
|
memset(buffer8, 0, count * 0x200);
|
|
} else {
|
|
return -1;
|
|
}
|
|
if ((keyslot == 0x11) && (sector == SECTOR_SECRET)) CryptSector0x96(buffer8, false);
|
|
else if (keyslot < 0x40) CryptNand(buffer8, sector, count, keyslot);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int WriteNandSectors(const void* buffer, u32 sector, u32 count, u32 keyslot, u32 nand_dst)
|
|
{
|
|
u8* buffer8 = (u8*) buffer;
|
|
// buffer must not be changed, so this is a little complicated
|
|
for (u32 s = 0; s < count; s += (NAND_BUFFER_SIZE / 0x200)) {
|
|
u32 pcount = min((NAND_BUFFER_SIZE/0x200), (count - s));
|
|
memcpy(NAND_BUFFER, buffer8 + (s*0x200), pcount * 0x200);
|
|
if ((keyslot == 0x11) && (sector == SECTOR_SECRET)) CryptSector0x96(NAND_BUFFER, true);
|
|
else if (keyslot < 0x40) CryptNand(NAND_BUFFER, sector + s, pcount, keyslot);
|
|
if (nand_dst == NAND_EMUNAND) {
|
|
int errorcode = 0;
|
|
if ((sector + s == 0) && (emunand_base_sector % 0x200000 == 0)) { // GW EmuNAND header handling
|
|
errorcode = sdmmc_sdcard_writesectors(emunand_base_sector + getMMCDevice(0)->total_size, 1, NAND_BUFFER);
|
|
errorcode = (!errorcode && (pcount > 1)) ? sdmmc_sdcard_writesectors(emunand_base_sector + 1, pcount - 1, NAND_BUFFER + 0x200) : errorcode;
|
|
} else errorcode = sdmmc_sdcard_writesectors(emunand_base_sector + sector + s, pcount, NAND_BUFFER);
|
|
if (errorcode) return errorcode;
|
|
} else if (nand_dst == NAND_IMGNAND) {
|
|
int errorcode = WriteImageSectors(NAND_BUFFER, sector + s, pcount);
|
|
if (errorcode) return errorcode;
|
|
} else if (nand_dst == NAND_SYSNAND) {
|
|
int errorcode = sdmmc_nand_writesectors(sector + s, pcount, NAND_BUFFER);
|
|
if (errorcode) return errorcode;
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
// shamelessly stolen from myself
|
|
// see: https://github.com/d0k3/GodMode9/blob/master/source/game/ncsd.c#L4
|
|
u32 ValidateNandNcsdHeader(NandNcsdHeader* header)
|
|
{
|
|
u8 zeroes[16] = { 0 };
|
|
if ((memcmp(header->magic, "NCSD", 4) != 0) || // check magic number
|
|
(memcmp(header->partitions_fs_type, zeroes, 8) == 0) || header->mediaId) // prevent detection of cart NCSD images
|
|
return 1;
|
|
|
|
u32 data_units = 0;
|
|
u32 firm_count = 0;
|
|
for (u32 i = 0; i < 8; i++) {
|
|
NandNcsdPartition* partition = header->partitions + i;
|
|
u8 np_type = header->partitions_fs_type[i];
|
|
if ((i == 0) && !partition->size) return 1; // first content must be there
|
|
else if (!partition->size) continue;
|
|
if (!np_type) return 1; // partition must have a type
|
|
if (partition->offset < data_units)
|
|
return 1; // overlapping partitions, failed
|
|
data_units = partition->offset + partition->size;
|
|
if (np_type == NP_TYPE_FIRM) firm_count++; // count firms
|
|
}
|
|
if (data_units > header->size) return 1;
|
|
if (!firm_count) return 1; // at least one firm is required
|
|
|
|
return 0;
|
|
}
|
|
|
|
u32 GetNandNcsdMinSizeSectors(NandNcsdHeader* ncsd)
|
|
{
|
|
u32 nand_minsize = 0;
|
|
for (u32 prt_idx = 0; prt_idx < 8; prt_idx++) {
|
|
u32 prt_end = ncsd->partitions[prt_idx].offset + ncsd->partitions[prt_idx].size;
|
|
if (prt_end > nand_minsize) nand_minsize = prt_end;
|
|
}
|
|
|
|
return nand_minsize;
|
|
}
|
|
|
|
u32 GetNandMinSizeSectors(u32 nand_src)
|
|
{
|
|
NandNcsdHeader ncsd;
|
|
if ((ReadNandSectors((u8*) &ncsd, 0, 1, 0xFF, nand_src) != 0) ||
|
|
(ValidateNandNcsdHeader(&ncsd) != 0)) return 0;
|
|
|
|
return GetNandNcsdMinSizeSectors(&ncsd);
|
|
}
|
|
|
|
u32 GetNandSizeSectors(u32 nand_src)
|
|
{
|
|
u32 sysnand_sectors = getMMCDevice(0)->total_size;
|
|
if (nand_src == NAND_SYSNAND) return sysnand_sectors; // for SysNAND
|
|
|
|
u32 min_sectors = GetNandMinSizeSectors(nand_src);
|
|
if (nand_src == NAND_EMUNAND) { // for EmuNAND
|
|
u32 partition_offset = GetPartitionOffsetSector("0:");
|
|
u32 emunand_max_sectors = (partition_offset >= (emunand_base_sector + 1)) ? // +1 for safety
|
|
partition_offset - (emunand_base_sector + 1) : 0;
|
|
u32 emunand_min_sectors = (emunand_base_sector % 0x2000 == 0) ? sysnand_sectors : min_sectors;
|
|
return (emunand_min_sectors > emunand_max_sectors) ? 0 : emunand_min_sectors;
|
|
} else if (nand_src == NAND_IMGNAND) { // for images
|
|
u32 img_sectors = (GetMountState() & IMG_NAND) ? GetMountSize() / 0x200 : 0;
|
|
return (img_sectors >= min_sectors) ? img_sectors : 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
u32 GetNandNcsdPartitionInfo(NandPartitionInfo* info, u32 type, u32 subtype, u32 index, NandNcsdHeader* ncsd)
|
|
{
|
|
// safety / set keyslot
|
|
if ((type == NP_TYPE_FAT) || (type > NP_TYPE_BONUS) || (subtype > NP_SUBTYPE_CTR_N)) return 1;
|
|
info->keyslot = np_keyslots[type][subtype];
|
|
|
|
// full (minimum) NAND "partition"
|
|
if (type == NP_TYPE_NONE) {
|
|
info->sector = 0x00;
|
|
info->count = GetNandNcsdMinSizeSectors(ncsd);
|
|
return 0;
|
|
}
|
|
|
|
// special, custom partition types, not in NCSD
|
|
if (type >= NP_TYPE_NCSD) {
|
|
if (type == NP_TYPE_NCSD) {
|
|
info->sector = 0x00; // hardcoded
|
|
info->count = 0x01;
|
|
} else if (type == NP_TYPE_D0K3) {
|
|
info->sector = SECTOR_D0K3; // hardcoded
|
|
info->count = SECTOR_SECRET - info->sector;
|
|
} else if (type == NP_TYPE_SECRET) {
|
|
info->sector = SECTOR_SECRET;
|
|
info->count = 0x01;
|
|
} else if (type == NP_TYPE_BONUS) {
|
|
info->sector = GetNandNcsdMinSizeSectors(ncsd);
|
|
info->count = 0x00; // placeholder, actual size needs info from NAND chip
|
|
} else return 1;
|
|
return 0;
|
|
}
|
|
|
|
u32 prt_idx = 8;
|
|
for (prt_idx = 0; prt_idx < 8; prt_idx++) {
|
|
if ((ncsd->partitions_fs_type[prt_idx] != type) ||
|
|
(ncsd->partitions_crypto_type[prt_idx] != subtype)) continue;
|
|
if (index == 0) break;
|
|
index--;
|
|
}
|
|
|
|
if (prt_idx >= 8) return 1; // not found
|
|
info->sector = ncsd->partitions[prt_idx].offset;
|
|
info->count = ncsd->partitions[prt_idx].size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
u32 GetNandPartitionInfo(NandPartitionInfo* info, u32 type, u32 subtype, u32 index, u32 nand_src)
|
|
{
|
|
// workaround for info == NULL
|
|
NandPartitionInfo dummy;
|
|
if (!info) info = &dummy;
|
|
|
|
// workaround for ZERONAND
|
|
if (nand_src == NAND_ZERONAND) nand_src = NAND_SYSNAND;
|
|
|
|
// find type & subtype in NCSD header
|
|
u8 header[0x200];
|
|
ReadNandSectors(header, 0x00, 1, 0xFF, nand_src);
|
|
NandNcsdHeader* ncsd = (NandNcsdHeader*) header;
|
|
if ((ValidateNandNcsdHeader(ncsd) != 0) ||
|
|
((type == NP_TYPE_FAT) && (GetNandNcsdPartitionInfo(info, NP_TYPE_STD, subtype, 0, ncsd) != 0)) ||
|
|
((type != NP_TYPE_FAT) && (GetNandNcsdPartitionInfo(info, type, subtype, index, ncsd) != 0)))
|
|
return 1; // not found
|
|
|
|
if (type == NP_TYPE_BONUS) { // size of bonus partition
|
|
info->count = GetNandSizeSectors(nand_src) - info->sector;
|
|
} else if (type == NP_TYPE_FAT) { // FAT type specific stuff
|
|
ReadNandSectors(header, info->sector, 1, info->keyslot, nand_src);
|
|
MbrHeader* mbr = (MbrHeader*) header;
|
|
if ((ValidateMbrHeader(mbr) != 0) || (index >= 4) ||
|
|
(mbr->partitions[index].sector == 0) || (mbr->partitions[index].count == 0) ||
|
|
(mbr->partitions[index].sector + mbr->partitions[index].count > info->count))
|
|
return 1;
|
|
info->sector += mbr->partitions[index].sector;
|
|
info->count = mbr->partitions[index].count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
u32 GetLegitSector0x96(u8* sector)
|
|
{
|
|
// secret sector already in buffer?
|
|
if (sha_cmp(SECTOR_SHA256, sector, 0x200, SHA256_MODE) == 0)
|
|
return 0;
|
|
|
|
// search for valid secret sector in SysNAND / EmuNAND
|
|
const u32 nand_src[] = { NAND_SYSNAND, NAND_EMUNAND };
|
|
for (u32 i = 0; i < sizeof(nand_src) / sizeof(u32); i++) {
|
|
ReadNandSectors(sector, SECTOR_SECRET, 1, 0x11, nand_src[i]);
|
|
if (sha_cmp(SECTOR_SHA256, sector, 0x200, SHA256_MODE) == 0)
|
|
return 0;
|
|
}
|
|
|
|
// failed if we arrive here
|
|
return 1;
|
|
}
|
|
|
|
// OTP hash is 32 byte in size
|
|
u32 GetOtpHash(void* hash) {
|
|
if (!CheckSector0x96Crypto()) return 1;
|
|
memcpy(hash, OtpSha256, 0x20);
|
|
return 0;
|
|
}
|
|
|
|
// NAND CID is 16 byte in size
|
|
u32 GetNandCid(void* cid) {
|
|
sdmmc_get_cid(1, (u32*) cid);
|
|
return 0;
|
|
}
|
|
|
|
bool CheckMultiEmuNand(void)
|
|
{
|
|
// this only checks for the theoretical possibility
|
|
u32 emunand_min_sectors = GetNandMinSizeSectors(NAND_EMUNAND);
|
|
return (emunand_min_sectors && (GetPartitionOffsetSector("0:") >= (u64) (align(emunand_min_sectors + 1, 0x2000) * 2)));
|
|
}
|
|
|
|
u32 AutoEmuNandBase(bool reset)
|
|
{
|
|
if (!reset) {
|
|
u32 last_valid = emunand_base_sector;
|
|
u32 emunand_min_sectors = GetNandMinSizeSectors(NAND_EMUNAND);
|
|
|
|
// legacy type multiNAND
|
|
u32 legacy_sectors = (getMMCDevice(0)->total_size > 0x200000) ? 0x400000 : 0x200000;
|
|
emunand_base_sector += legacy_sectors - (emunand_base_sector % legacy_sectors);
|
|
if (GetNandSizeSectors(NAND_EMUNAND) && (GetNandPartitionInfo(NULL, NP_TYPE_NCSD, NP_SUBTYPE_CTR, 0, NAND_EMUNAND) == 0))
|
|
return emunand_base_sector; // GW type EmuNAND
|
|
emunand_base_sector++;
|
|
if (GetNandSizeSectors(NAND_EMUNAND) && (GetNandPartitionInfo(NULL, NP_TYPE_NCSD, NP_SUBTYPE_CTR, 0, NAND_EMUNAND) == 0))
|
|
return emunand_base_sector; // RedNAND type EmuNAND
|
|
|
|
// compact type multiNAND
|
|
if (emunand_min_sectors && (last_valid % 0x2000 <= 1)) {
|
|
u32 compact_sectors = align(emunand_min_sectors + 1, 0x2000);
|
|
emunand_base_sector = last_valid + compact_sectors;
|
|
if (GetNandSizeSectors(NAND_EMUNAND) && (GetNandPartitionInfo(NULL, NP_TYPE_NCSD, NP_SUBTYPE_CTR, 0, NAND_EMUNAND) == 0))
|
|
return emunand_base_sector;
|
|
}
|
|
}
|
|
|
|
emunand_base_sector = 0x000000; // GW type EmuNAND
|
|
if (GetNandPartitionInfo(NULL, NP_TYPE_NCSD, NP_SUBTYPE_CTR, 0, NAND_EMUNAND) != 0)
|
|
emunand_base_sector = 0x000001; // RedNAND type EmuNAND
|
|
|
|
return emunand_base_sector;
|
|
}
|
|
|
|
u32 GetEmuNandBase(void)
|
|
{
|
|
return emunand_base_sector;
|
|
}
|
|
|
|
u32 SetEmuNandBase(u32 base_sector)
|
|
{
|
|
return (emunand_base_sector = base_sector);
|
|
}
|