mirror of
https://github.com/lltcggie/waifu2x-caffe.git
synced 2025-06-26 05:32:47 +00:00
分割サイズにかかわらず、境界付近がより正確な値になるようにした
This commit is contained in:
parent
138e9f1c43
commit
a0055a14d3
@ -66,7 +66,7 @@ static std::once_flag waifu2x_cuda_once_flag;
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
Waifu2x::Waifu2x() : is_inited(false), isCuda(false), block(nullptr), dummy_data(nullptr), out_block(nullptr)
|
||||
Waifu2x::Waifu2x() : is_inited(false), isCuda(false), input_block(nullptr), dummy_data(nullptr), output_block(nullptr)
|
||||
{
|
||||
}
|
||||
|
||||
@ -419,8 +419,8 @@ Waifu2x::eWaifu2xError Waifu2x::ConstractNet(boost::shared_ptr<caffe::Net<float>
|
||||
{
|
||||
if (layer_param->mutable_memory_data_param()->width() == original_width_height && layer_param->mutable_memory_data_param()->height() == original_width_height)
|
||||
{
|
||||
layer_param->mutable_memory_data_param()->set_width(block_size);
|
||||
layer_param->mutable_memory_data_param()->set_height(block_size);
|
||||
layer_param->mutable_memory_data_param()->set_width(input_block_size);
|
||||
layer_param->mutable_memory_data_param()->set_height(input_block_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -442,7 +442,10 @@ Waifu2x::eWaifu2xError Waifu2x::ReconstructImage(boost::shared_ptr<caffe::Net<fl
|
||||
|
||||
assert(im.channels() == 1);
|
||||
|
||||
float *imptr = (float *)im.data;
|
||||
cv::Mat outim(im.rows, im.cols, im.type());
|
||||
|
||||
// float *imptr = (float *)im.data;
|
||||
float *imptr = (float *)outim.data;
|
||||
|
||||
try
|
||||
{
|
||||
@ -463,8 +466,10 @@ Waifu2x::eWaifu2xError Waifu2x::ReconstructImage(boost::shared_ptr<caffe::Net<fl
|
||||
|
||||
const int BlockNum = WidthNum * HeightNum;
|
||||
|
||||
const int input_block_plane_size = block_size * block_size;
|
||||
const int output_block_plane_size = crop_size * crop_size;
|
||||
const int input_block_plane_size = input_block_size * input_block_size;
|
||||
const int output_block_plane_size = output_block_size * output_block_size;
|
||||
|
||||
const int output_padding = inner_padding + outer_padding - layer_num;
|
||||
|
||||
// 画像は(消費メモリの都合上)output_size*output_sizeに分けて再構築する
|
||||
for (int num = 0; num < BlockNum; num += batch_size)
|
||||
@ -484,34 +489,79 @@ Waifu2x::eWaifu2xError Waifu2x::ReconstructImage(boost::shared_ptr<caffe::Net<fl
|
||||
|
||||
if (w + crop_size <= Width && h + crop_size <= Height)
|
||||
{
|
||||
int x, y;
|
||||
x = w - inner_padding;
|
||||
y = h - inner_padding;
|
||||
|
||||
int width, height;
|
||||
|
||||
width = crop_size + inner_padding * 2;
|
||||
height = crop_size + inner_padding * 2;
|
||||
|
||||
int top, bottom, left, right;
|
||||
|
||||
top = outer_padding;
|
||||
bottom = outer_padding;
|
||||
left = outer_padding;
|
||||
right = outer_padding;
|
||||
|
||||
if (x < 0)
|
||||
{
|
||||
cv::Mat someimg = im(cv::Rect(w, h, crop_size, crop_size));
|
||||
left += -x;
|
||||
width -= -x;
|
||||
x = 0;
|
||||
}
|
||||
|
||||
if (x + width > Width)
|
||||
{
|
||||
right += (x + width) - Width;
|
||||
width = Width - x;
|
||||
}
|
||||
|
||||
if (y < 0)
|
||||
{
|
||||
top += -y;
|
||||
height -= -y;
|
||||
y = 0;
|
||||
}
|
||||
|
||||
if (y + height > Height)
|
||||
{
|
||||
bottom += (y + height) - Height;
|
||||
height = Height - y;
|
||||
}
|
||||
|
||||
cv::Mat someimg = im(cv::Rect(x, y, width, height));
|
||||
|
||||
cv::Mat someimg_tmp;
|
||||
someimg.copyTo(someimg_tmp);
|
||||
someimg.release();
|
||||
|
||||
cv::Mat someborderimg;
|
||||
// 画像を中央にパディング。余白はcv::BORDER_REPLICATEで埋める
|
||||
cv::copyMakeBorder(someimg, someborderimg, layer_num, layer_num, layer_num, layer_num, cv::BORDER_REPLICATE);
|
||||
someimg.release();
|
||||
cv::copyMakeBorder(someimg_tmp, someborderimg, top, bottom, left, right, cv::BORDER_REPLICATE);
|
||||
someimg_tmp.release();
|
||||
|
||||
// 画像を直列に変換
|
||||
{
|
||||
float *fptr = block + (input_block_plane_size * n);
|
||||
float *fptr = input_block + (input_block_plane_size * n);
|
||||
const float *uptr = (const float *)someborderimg.data;
|
||||
|
||||
const auto Line = someborderimg.step1();
|
||||
|
||||
if (block_size == Line)
|
||||
memcpy(fptr, uptr, block_size * block_size * sizeof(float));
|
||||
if (input_block_size == Line)
|
||||
memcpy(fptr, uptr, input_block_size * input_block_size * sizeof(float));
|
||||
else
|
||||
{
|
||||
for (int i = 0; i < block_size; i++)
|
||||
memcpy(fptr + i * block_size, uptr + i * Line, block_size * sizeof(float));
|
||||
}
|
||||
for (int i = 0; i < input_block_size; i++)
|
||||
memcpy(fptr + i * input_block_size, uptr + i * Line, input_block_size * sizeof(float));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ネットワークに画像を入力
|
||||
input_layer->Reset(block, dummy_data, input_block_plane_size * processNum);
|
||||
input_layer->Reset(input_block, dummy_data, input_block_plane_size * processNum);
|
||||
|
||||
// 計算
|
||||
auto out = net->ForwardPrefilled(nullptr);
|
||||
@ -527,7 +577,7 @@ Waifu2x::eWaifu2xError Waifu2x::ReconstructImage(boost::shared_ptr<caffe::Net<fl
|
||||
else
|
||||
ptr = b->gpu_data();
|
||||
|
||||
caffe::caffe_copy(output_block_plane_size * processNum, ptr, out_block);
|
||||
caffe::caffe_copy(output_block_plane_size * processNum, ptr, output_block);
|
||||
|
||||
for (int n = 0; n < processNum; n++)
|
||||
{
|
||||
@ -537,11 +587,11 @@ Waifu2x::eWaifu2xError Waifu2x::ReconstructImage(boost::shared_ptr<caffe::Net<fl
|
||||
const int w = wn * output_size;
|
||||
const int h = hn * output_size;
|
||||
|
||||
const float *fptr = out_block + (output_block_plane_size * n);
|
||||
const float *fptr = output_block + (output_block_plane_size * n);
|
||||
|
||||
// 結果を入力画像にコピー(後に処理する部分とここで上書きする部分は被らないから、入力画像を上書きしても大丈夫)
|
||||
for (int i = 0; i < crop_size; i++)
|
||||
memcpy(imptr + (h + i) * Line + w, fptr + i * crop_size, crop_size * sizeof(float));
|
||||
memcpy(imptr + (h + i) * Line + w, fptr + (i + output_padding) * output_block_size + output_padding, crop_size * sizeof(float));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -550,6 +600,8 @@ Waifu2x::eWaifu2xError Waifu2x::ReconstructImage(boost::shared_ptr<caffe::Net<fl
|
||||
return eWaifu2xError_FailedProcessCaffe;
|
||||
}
|
||||
|
||||
im = outim;
|
||||
|
||||
return eWaifu2xError_OK;
|
||||
}
|
||||
|
||||
@ -575,10 +627,15 @@ Waifu2x::eWaifu2xError Waifu2x::init(int argc, char** argv, const std::string &M
|
||||
crop_size = CropSize;
|
||||
batch_size = BatchSize;
|
||||
|
||||
inner_padding = layer_num;
|
||||
outer_padding = 1;
|
||||
|
||||
output_size = crop_size - offset * 2;
|
||||
block_size = crop_size + layer_num * 2;
|
||||
input_block_size = crop_size + (inner_padding + outer_padding) * 2;
|
||||
original_width_height = 128 + layer_num * 2;
|
||||
|
||||
output_block_size = crop_size + (inner_padding + outer_padding - layer_num) * 2;
|
||||
|
||||
std::call_once(waifu2x_once_flag, [argc, argv]()
|
||||
{
|
||||
assert(argc >= 1);
|
||||
@ -658,20 +715,20 @@ Waifu2x::eWaifu2xError Waifu2x::init(int argc, char** argv, const std::string &M
|
||||
return ret;
|
||||
}
|
||||
|
||||
const int input_block_plane_size = block_size * block_size;
|
||||
const int output_block_plane_size = crop_size * crop_size;
|
||||
const int input_block_plane_size = input_block_size * input_block_size;
|
||||
const int output_block_plane_size = output_block_size * output_block_size;
|
||||
|
||||
if (isCuda)
|
||||
{
|
||||
CUDA_CHECK_WAIFU2X(cudaHostAlloc(&block, sizeof(float) * input_block_plane_size * batch_size, cudaHostAllocWriteCombined));
|
||||
CUDA_CHECK_WAIFU2X(cudaHostAlloc(&input_block, sizeof(float) * input_block_plane_size * batch_size, cudaHostAllocWriteCombined));
|
||||
CUDA_CHECK_WAIFU2X(cudaHostAlloc(&dummy_data, sizeof(float) * input_block_plane_size * batch_size, cudaHostAllocWriteCombined));
|
||||
CUDA_CHECK_WAIFU2X(cudaHostAlloc(&out_block, sizeof(float) * output_block_plane_size * batch_size, cudaHostAllocDefault));
|
||||
CUDA_CHECK_WAIFU2X(cudaHostAlloc(&output_block, sizeof(float) * output_block_plane_size * batch_size, cudaHostAllocDefault));
|
||||
}
|
||||
else
|
||||
{
|
||||
block = new float[input_block_plane_size * batch_size];
|
||||
input_block = new float[input_block_plane_size * batch_size];
|
||||
dummy_data = new float[input_block_plane_size * batch_size];
|
||||
out_block = new float[output_block_plane_size * batch_size];
|
||||
output_block = new float[output_block_plane_size * batch_size];
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < input_block_plane_size * batch_size; i++)
|
||||
@ -694,15 +751,15 @@ void Waifu2x::destroy()
|
||||
|
||||
if (isCuda)
|
||||
{
|
||||
CUDA_HOST_SAFE_FREE(block);
|
||||
CUDA_HOST_SAFE_FREE(input_block);
|
||||
CUDA_HOST_SAFE_FREE(dummy_data);
|
||||
CUDA_HOST_SAFE_FREE(out_block);
|
||||
CUDA_HOST_SAFE_FREE(output_block);
|
||||
}
|
||||
else
|
||||
{
|
||||
SAFE_DELETE_WAIFU2X(block);
|
||||
SAFE_DELETE_WAIFU2X(input_block);
|
||||
SAFE_DELETE_WAIFU2X(dummy_data);
|
||||
SAFE_DELETE_WAIFU2X(out_block);
|
||||
SAFE_DELETE_WAIFU2X(output_block);
|
||||
}
|
||||
|
||||
is_inited = false;
|
||||
|
@ -59,7 +59,7 @@ private:
|
||||
int batch_size;
|
||||
|
||||
// ネットに入力する画像のサイズ
|
||||
int block_size;
|
||||
int input_block_size;
|
||||
// ブロック変換後の出力サイズ
|
||||
int output_size;
|
||||
// ネットワークに入力する画像のサイズ(出力画像の幅はlayer_num * 2だけ小さくなる)
|
||||
@ -73,14 +73,19 @@ private:
|
||||
std::string model_dir;
|
||||
std::string process;
|
||||
|
||||
int inner_padding;
|
||||
int outer_padding;
|
||||
|
||||
int output_block_size;
|
||||
|
||||
bool isCuda;
|
||||
|
||||
boost::shared_ptr<caffe::Net<float>> net_noise;
|
||||
boost::shared_ptr<caffe::Net<float>> net_scale;
|
||||
|
||||
float *block;
|
||||
float *input_block;
|
||||
float *dummy_data;
|
||||
float *out_block;
|
||||
float *output_block;
|
||||
|
||||
private:
|
||||
eWaifu2xError LoadImage(cv::Mat &float_image, const std::string &input_file);
|
||||
|
Loading…
x
Reference in New Issue
Block a user