mirror of
https://github.com/lltcggie/waifu2x-caffe.git
synced 2025-06-26 13:42:48 +00:00
バッチサイズで並列化出来るか試してみた
This commit is contained in:
parent
b6e104bed7
commit
a78fbbf322
@ -24,13 +24,19 @@
|
|||||||
#pragma comment(lib, "libprotoc.lib")
|
#pragma comment(lib, "libprotoc.lib")
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
const auto block_size = 128;
|
// 一度に処理する画像の幅
|
||||||
const auto offset = 0;
|
const int block_size = 128;
|
||||||
const auto layer_num = 7;
|
// 一度に何ブロック分処理するか
|
||||||
|
const int batch_size = 1;
|
||||||
|
// 入力画像のオフセット
|
||||||
|
const int offset = 0;
|
||||||
|
// srcnn.prototxtで定義されたレイヤーの数
|
||||||
|
const int layer_num = 7;
|
||||||
|
|
||||||
const auto output_size = block_size - offset * 2;
|
const auto output_size = block_size - offset * 2;
|
||||||
|
// ネットワークに入力する画像のサイズ(出力画像の幅はlayer_num * 2だけ小さくなる)
|
||||||
const auto block_width_height = block_size + layer_num * 2;
|
const auto block_width_height = block_size + layer_num * 2;
|
||||||
|
// srcnn.prototxtで定義された入力する画像のサイズ
|
||||||
const auto original_width_height = 128 + layer_num * 2;
|
const auto original_width_height = 128 + layer_num * 2;
|
||||||
|
|
||||||
const int ConvertMode = CV_RGB2YUV;
|
const int ConvertMode = CV_RGB2YUV;
|
||||||
@ -337,6 +343,9 @@ eWaifu2xError ReconstructImage(boost::shared_ptr<caffe::Net<float>> net, cv::Mat
|
|||||||
const auto Width = im.size().width;
|
const auto Width = im.size().width;
|
||||||
const auto Line = im.step1();
|
const auto Line = im.step1();
|
||||||
|
|
||||||
|
assert(Width % output_size == 0);
|
||||||
|
assert(Height % output_size == 0);
|
||||||
|
|
||||||
assert(im.channels() == 1);
|
assert(im.channels() == 1);
|
||||||
|
|
||||||
float *imptr = (float *)im.data;
|
float *imptr = (float *)im.data;
|
||||||
@ -353,17 +362,37 @@ eWaifu2xError ReconstructImage(boost::shared_ptr<caffe::Net<float>> net, cv::Mat
|
|||||||
net->layer_by_name("conv7_layer"));
|
net->layer_by_name("conv7_layer"));
|
||||||
assert(conv7_layer);
|
assert(conv7_layer);
|
||||||
|
|
||||||
// ネットワークに入力する画像のサイズ(出力画像の幅はlayer_num * 2だけ小さくなる)
|
|
||||||
const int block_width = block_size + layer_num * 2;
|
|
||||||
|
|
||||||
std::vector<float> block(block_width * block_width, 0.0f);
|
input_layer->set_batch_size(batch_size);
|
||||||
|
|
||||||
|
const int WidthNum = Width / output_size;
|
||||||
|
const int HeightNum = Height / output_size;
|
||||||
|
|
||||||
|
const int BlockNum = WidthNum * HeightNum;
|
||||||
|
|
||||||
|
const int input_block_plane_size = block_width_height * block_width_height;
|
||||||
|
const int output_block_plane_size = block_size * block_size;
|
||||||
|
|
||||||
|
std::vector<float> block(input_block_plane_size * batch_size, 0.0f);
|
||||||
std::vector<float> dummy_data(block.size(), 0.0f);
|
std::vector<float> dummy_data(block.size(), 0.0f);
|
||||||
|
|
||||||
// 画像は(消費メモリの都合上)output_size*output_sizeに分けて再構築する
|
// 画像は(消費メモリの都合上)output_size*output_sizeに分けて再構築する
|
||||||
for (int h = 0; h < Height; h += output_size)
|
for (int num = 0; num < BlockNum; num += batch_size)
|
||||||
{
|
{
|
||||||
for (int w = 0; w < Width; w += output_size)
|
const int processNum = (BlockNum - num) >= batch_size ? batch_size : BlockNum - num;
|
||||||
|
|
||||||
|
if (processNum < batch_size)
|
||||||
|
input_layer->set_batch_size(processNum);
|
||||||
|
|
||||||
|
for (int n = 0; n < processNum; n++)
|
||||||
{
|
{
|
||||||
|
const int wn = (num + n) % WidthNum;
|
||||||
|
const int hn = (num + n) / WidthNum;
|
||||||
|
|
||||||
|
const int w = wn * output_size;
|
||||||
|
const int h = hn * output_size;
|
||||||
|
|
||||||
if (w + block_size <= Width && h + block_size <= Height)
|
if (w + block_size <= Width && h + block_size <= Height)
|
||||||
{
|
{
|
||||||
{
|
{
|
||||||
@ -375,44 +404,56 @@ eWaifu2xError ReconstructImage(boost::shared_ptr<caffe::Net<float>> net, cv::Mat
|
|||||||
|
|
||||||
// 画像を直列に変換
|
// 画像を直列に変換
|
||||||
{
|
{
|
||||||
float *fptr = block.data();
|
float *fptr = block.data() + (input_block_plane_size * n);
|
||||||
const float *uptr = (const float *)someborderimg.data;
|
const float *uptr = (const float *)someborderimg.data;
|
||||||
|
|
||||||
const auto Line = someborderimg.step1();
|
const auto Line = someborderimg.step1();
|
||||||
|
|
||||||
for (int i = 0; i < block_width; i++)
|
if (block_width_height == Line)
|
||||||
memcpy(fptr + i * block_width, uptr + i * Line, block_width * sizeof(float));
|
memcpy(fptr, uptr, block_width_height * block_width_height * sizeof(float));
|
||||||
|
else
|
||||||
|
{
|
||||||
|
for (int i = 0; i < block_width_height; i++)
|
||||||
|
memcpy(fptr + i * block_width_height, uptr + i * Line, block_width_height * sizeof(float));
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// ネットワークに画像を入力
|
|
||||||
input_layer->Reset(block.data(), dummy_data.data(), block.size());
|
|
||||||
|
|
||||||
// 計算
|
|
||||||
auto out = net->ForwardPrefilled(nullptr);
|
|
||||||
|
|
||||||
auto b = out[0];
|
|
||||||
|
|
||||||
assert(b->count() == block_size * block_size);
|
|
||||||
|
|
||||||
const float *ptr = nullptr;
|
|
||||||
|
|
||||||
if (caffe::Caffe::mode() == caffe::Caffe::CPU)
|
|
||||||
ptr = b->cpu_data();
|
|
||||||
else
|
|
||||||
ptr = b->gpu_data();
|
|
||||||
|
|
||||||
// 結果を入力画像にコピー(後に処理する部分とここで上書きする部分は被らないから、入力画像を上書きしても大丈夫)
|
|
||||||
|
|
||||||
caffe::caffe_copy(block_size * block_size, ptr, block.data());
|
|
||||||
|
|
||||||
{
|
|
||||||
float *fptr = block.data();
|
|
||||||
for (int i = 0; i < block_size; i++)
|
|
||||||
memcpy(imptr + (h + i) * Line + w, fptr + i * block_size, block_size * sizeof(float));
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ネットワークに画像を入力
|
||||||
|
input_layer->Reset(block.data(), dummy_data.data(), block.size());
|
||||||
|
|
||||||
|
// 計算
|
||||||
|
auto out = net->ForwardPrefilled(nullptr);
|
||||||
|
|
||||||
|
auto b = out[0];
|
||||||
|
|
||||||
|
assert(b->count() == output_block_plane_size * processNum);
|
||||||
|
|
||||||
|
const float *ptr = nullptr;
|
||||||
|
|
||||||
|
if (caffe::Caffe::mode() == caffe::Caffe::CPU)
|
||||||
|
ptr = b->cpu_data();
|
||||||
|
else
|
||||||
|
ptr = b->gpu_data();
|
||||||
|
|
||||||
|
caffe::caffe_copy(output_block_plane_size * processNum, ptr, block.data());
|
||||||
|
|
||||||
|
for (int n = 0; n < processNum; n++)
|
||||||
|
{
|
||||||
|
const int wn = (num + n) % WidthNum;
|
||||||
|
const int hn = (num + n) / WidthNum;
|
||||||
|
|
||||||
|
const int w = wn * output_size;
|
||||||
|
const int h = hn * output_size;
|
||||||
|
|
||||||
|
const float *fptr = block.data() + (output_block_plane_size * n);
|
||||||
|
|
||||||
|
// 結果を入力画像にコピー(後に処理する部分とここで上書きする部分は被らないから、入力画像を上書きしても大丈夫)
|
||||||
|
for (int i = 0; i < block_size; i++)
|
||||||
|
caffe::caffe_copy(block_size, fptr + i * block_size, imptr + (h + i) * Line + w);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
catch (...)
|
catch (...)
|
||||||
@ -423,6 +464,8 @@ eWaifu2xError ReconstructImage(boost::shared_ptr<caffe::Net<float>> net, cv::Mat
|
|||||||
return eWaifu2xError_OK;
|
return eWaifu2xError_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#include <boost/timer.hpp>
|
||||||
|
|
||||||
eWaifu2xError waifu2x(int argc, char** argv, const std::vector<InputOutputPathPair> &file_paths,
|
eWaifu2xError waifu2x(int argc, char** argv, const std::vector<InputOutputPathPair> &file_paths,
|
||||||
const std::string &mode, const int noise_level, const double scale_ratio, const std::string &model_dir, const std::string &process,
|
const std::string &mode, const int noise_level, const double scale_ratio, const std::string &model_dir, const std::string &process,
|
||||||
std::vector<PathAndErrorPair> &errors, const waifu2xCancelFunc cancel_func, const waifu2xProgressFunc progress_func, const waifu2xTimeFunc time_func)
|
std::vector<PathAndErrorPair> &errors, const waifu2xCancelFunc cancel_func, const waifu2xProgressFunc progress_func, const waifu2xTimeFunc time_func)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user