バッチサイズで並列化出来るか試してみた

This commit is contained in:
lltcggie 2015-06-01 01:17:40 +09:00
parent b6e104bed7
commit a78fbbf322

View File

@ -24,13 +24,19 @@
#pragma comment(lib, "libprotoc.lib") #pragma comment(lib, "libprotoc.lib")
#endif #endif
const auto block_size = 128; // 一度に処理する画像の幅
const auto offset = 0; const int block_size = 128;
const auto layer_num = 7; // 一度に何ブロック分処理するか
const int batch_size = 1;
// 入力画像のオフセット
const int offset = 0;
// srcnn.prototxtで定義されたレイヤーの数
const int layer_num = 7;
const auto output_size = block_size - offset * 2; const auto output_size = block_size - offset * 2;
// ネットワークに入力する画像のサイズ(出力画像の幅はlayer_num * 2だけ小さくなる)
const auto block_width_height = block_size + layer_num * 2; const auto block_width_height = block_size + layer_num * 2;
// srcnn.prototxtで定義された入力する画像のサイズ
const auto original_width_height = 128 + layer_num * 2; const auto original_width_height = 128 + layer_num * 2;
const int ConvertMode = CV_RGB2YUV; const int ConvertMode = CV_RGB2YUV;
@ -337,6 +343,9 @@ eWaifu2xError ReconstructImage(boost::shared_ptr<caffe::Net<float>> net, cv::Mat
const auto Width = im.size().width; const auto Width = im.size().width;
const auto Line = im.step1(); const auto Line = im.step1();
assert(Width % output_size == 0);
assert(Height % output_size == 0);
assert(im.channels() == 1); assert(im.channels() == 1);
float *imptr = (float *)im.data; float *imptr = (float *)im.data;
@ -353,17 +362,37 @@ eWaifu2xError ReconstructImage(boost::shared_ptr<caffe::Net<float>> net, cv::Mat
net->layer_by_name("conv7_layer")); net->layer_by_name("conv7_layer"));
assert(conv7_layer); assert(conv7_layer);
// ネットワークに入力する画像のサイズ(出力画像の幅はlayer_num * 2だけ小さくなる)
const int block_width = block_size + layer_num * 2;
std::vector<float> block(block_width * block_width, 0.0f); input_layer->set_batch_size(batch_size);
const int WidthNum = Width / output_size;
const int HeightNum = Height / output_size;
const int BlockNum = WidthNum * HeightNum;
const int input_block_plane_size = block_width_height * block_width_height;
const int output_block_plane_size = block_size * block_size;
std::vector<float> block(input_block_plane_size * batch_size, 0.0f);
std::vector<float> dummy_data(block.size(), 0.0f); std::vector<float> dummy_data(block.size(), 0.0f);
// 画像は(消費メモリの都合上)output_size*output_sizeに分けて再構築する // 画像は(消費メモリの都合上)output_size*output_sizeに分けて再構築する
for (int h = 0; h < Height; h += output_size) for (int num = 0; num < BlockNum; num += batch_size)
{ {
for (int w = 0; w < Width; w += output_size) const int processNum = (BlockNum - num) >= batch_size ? batch_size : BlockNum - num;
if (processNum < batch_size)
input_layer->set_batch_size(processNum);
for (int n = 0; n < processNum; n++)
{ {
const int wn = (num + n) % WidthNum;
const int hn = (num + n) / WidthNum;
const int w = wn * output_size;
const int h = hn * output_size;
if (w + block_size <= Width && h + block_size <= Height) if (w + block_size <= Width && h + block_size <= Height)
{ {
{ {
@ -375,44 +404,56 @@ eWaifu2xError ReconstructImage(boost::shared_ptr<caffe::Net<float>> net, cv::Mat
// 画像を直列に変換 // 画像を直列に変換
{ {
float *fptr = block.data(); float *fptr = block.data() + (input_block_plane_size * n);
const float *uptr = (const float *)someborderimg.data; const float *uptr = (const float *)someborderimg.data;
const auto Line = someborderimg.step1(); const auto Line = someborderimg.step1();
for (int i = 0; i < block_width; i++) if (block_width_height == Line)
memcpy(fptr + i * block_width, uptr + i * Line, block_width * sizeof(float)); memcpy(fptr, uptr, block_width_height * block_width_height * sizeof(float));
else
{
for (int i = 0; i < block_width_height; i++)
memcpy(fptr + i * block_width_height, uptr + i * Line, block_width_height * sizeof(float));
}
} }
} }
// ネットワークに画像を入力
input_layer->Reset(block.data(), dummy_data.data(), block.size());
// 計算
auto out = net->ForwardPrefilled(nullptr);
auto b = out[0];
assert(b->count() == block_size * block_size);
const float *ptr = nullptr;
if (caffe::Caffe::mode() == caffe::Caffe::CPU)
ptr = b->cpu_data();
else
ptr = b->gpu_data();
// 結果を入力画像にコピー(後に処理する部分とここで上書きする部分は被らないから、入力画像を上書きしても大丈夫)
caffe::caffe_copy(block_size * block_size, ptr, block.data());
{
float *fptr = block.data();
for (int i = 0; i < block_size; i++)
memcpy(imptr + (h + i) * Line + w, fptr + i * block_size, block_size * sizeof(float));
}
} }
} }
// ネットワークに画像を入力
input_layer->Reset(block.data(), dummy_data.data(), block.size());
// 計算
auto out = net->ForwardPrefilled(nullptr);
auto b = out[0];
assert(b->count() == output_block_plane_size * processNum);
const float *ptr = nullptr;
if (caffe::Caffe::mode() == caffe::Caffe::CPU)
ptr = b->cpu_data();
else
ptr = b->gpu_data();
caffe::caffe_copy(output_block_plane_size * processNum, ptr, block.data());
for (int n = 0; n < processNum; n++)
{
const int wn = (num + n) % WidthNum;
const int hn = (num + n) / WidthNum;
const int w = wn * output_size;
const int h = hn * output_size;
const float *fptr = block.data() + (output_block_plane_size * n);
// 結果を入力画像にコピー(後に処理する部分とここで上書きする部分は被らないから、入力画像を上書きしても大丈夫)
for (int i = 0; i < block_size; i++)
caffe::caffe_copy(block_size, fptr + i * block_size, imptr + (h + i) * Line + w);
}
} }
} }
catch (...) catch (...)
@ -423,6 +464,8 @@ eWaifu2xError ReconstructImage(boost::shared_ptr<caffe::Net<float>> net, cv::Mat
return eWaifu2xError_OK; return eWaifu2xError_OK;
} }
#include <boost/timer.hpp>
eWaifu2xError waifu2x(int argc, char** argv, const std::vector<InputOutputPathPair> &file_paths, eWaifu2xError waifu2x(int argc, char** argv, const std::vector<InputOutputPathPair> &file_paths,
const std::string &mode, const int noise_level, const double scale_ratio, const std::string &model_dir, const std::string &process, const std::string &mode, const int noise_level, const double scale_ratio, const std::string &model_dir, const std::string &process,
std::vector<PathAndErrorPair> &errors, const waifu2xCancelFunc cancel_func, const waifu2xProgressFunc progress_func, const waifu2xTimeFunc time_func) std::vector<PathAndErrorPair> &errors, const waifu2xCancelFunc cancel_func, const waifu2xProgressFunc progress_func, const waifu2xTimeFunc time_func)