mirror of
https://github.com/lltcggie/waifu2x-caffe.git
synced 2025-06-26 05:32:47 +00:00
GPU使用の場合はCUDAのメモリ割り当て関数を使うようにした
This commit is contained in:
parent
d74a020e5b
commit
ee1a7a3662
@ -8,6 +8,7 @@
|
||||
#include <boost/filesystem.hpp>
|
||||
#include <boost/algorithm/string.hpp>
|
||||
#include <chrono>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#if defined(WIN32) || defined(WIN64)
|
||||
#include <Windows.h>
|
||||
@ -37,8 +38,31 @@ const int ConvertInverseMode = CV_YUV2RGB;
|
||||
static std::once_flag waifu2x_once_flag;
|
||||
static std::once_flag waifu2x_cudnn_once_flag;
|
||||
|
||||
#ifndef CUDA_CHECK_WAIFU2X
|
||||
#define CUDA_CHECK_WAIFU2X(condition) \
|
||||
do { \
|
||||
cudaError_t error = condition; \
|
||||
if(error != cudaSuccess) throw error; \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
Waifu2x::Waifu2x() : is_inited(false)
|
||||
#define CUDA_HOST_SAFE_FREE(ptr) \
|
||||
do { \
|
||||
if (ptr) { \
|
||||
cudaFreeHost(ptr); \
|
||||
ptr = nullptr; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define SAFE_DELETE_WAIFU2X(ptr) \
|
||||
do { \
|
||||
if (ptr) { \
|
||||
delete [] ptr; \
|
||||
ptr = nullptr; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
Waifu2x::Waifu2x() : is_inited(false), isCuda(false), block(nullptr), dummy_data(nullptr), out_block(nullptr)
|
||||
{
|
||||
}
|
||||
|
||||
@ -376,8 +400,6 @@ Waifu2x::eWaifu2xError Waifu2x::ReconstructImage(boost::shared_ptr<caffe::Net<fl
|
||||
net->layer_by_name("conv7_layer"));
|
||||
assert(conv7_layer);
|
||||
|
||||
|
||||
|
||||
input_layer->set_batch_size(batch_size);
|
||||
|
||||
const int WidthNum = Width / output_size;
|
||||
@ -388,9 +410,6 @@ Waifu2x::eWaifu2xError Waifu2x::ReconstructImage(boost::shared_ptr<caffe::Net<fl
|
||||
const int input_block_plane_size = block_size * block_size;
|
||||
const int output_block_plane_size = crop_size * crop_size;
|
||||
|
||||
std::vector<float> block(input_block_plane_size * batch_size, 0.0f);
|
||||
std::vector<float> dummy_data(block.size(), 0.0f);
|
||||
|
||||
// 画像は(消費メモリの都合上)output_size*output_sizeに分けて再構築する
|
||||
for (int num = 0; num < BlockNum; num += batch_size)
|
||||
{
|
||||
@ -418,7 +437,7 @@ Waifu2x::eWaifu2xError Waifu2x::ReconstructImage(boost::shared_ptr<caffe::Net<fl
|
||||
|
||||
// 画像を直列に変換
|
||||
{
|
||||
float *fptr = block.data() + (input_block_plane_size * n);
|
||||
float *fptr = block + (input_block_plane_size * n);
|
||||
const float *uptr = (const float *)someborderimg.data;
|
||||
|
||||
const auto Line = someborderimg.step1();
|
||||
@ -436,7 +455,7 @@ Waifu2x::eWaifu2xError Waifu2x::ReconstructImage(boost::shared_ptr<caffe::Net<fl
|
||||
}
|
||||
|
||||
// ネットワークに画像を入力
|
||||
input_layer->Reset(block.data(), dummy_data.data(), block.size());
|
||||
input_layer->Reset(block, dummy_data, input_block_plane_size * batch_size);
|
||||
|
||||
// 計算
|
||||
auto out = net->ForwardPrefilled(nullptr);
|
||||
@ -452,7 +471,7 @@ Waifu2x::eWaifu2xError Waifu2x::ReconstructImage(boost::shared_ptr<caffe::Net<fl
|
||||
else
|
||||
ptr = b->gpu_data();
|
||||
|
||||
caffe::caffe_copy(output_block_plane_size * processNum, ptr, block.data());
|
||||
caffe::caffe_copy(output_block_plane_size * processNum, ptr, out_block);
|
||||
|
||||
for (int n = 0; n < processNum; n++)
|
||||
{
|
||||
@ -462,7 +481,7 @@ Waifu2x::eWaifu2xError Waifu2x::ReconstructImage(boost::shared_ptr<caffe::Net<fl
|
||||
const int w = wn * output_size;
|
||||
const int h = hn * output_size;
|
||||
|
||||
const float *fptr = block.data() + (output_block_plane_size * n);
|
||||
const float *fptr = out_block + (output_block_plane_size * n);
|
||||
|
||||
// 結果を入力画像にコピー(後に処理する部分とここで上書きする部分は被らないから、入力画像を上書きしても大丈夫)
|
||||
for (int i = 0; i < crop_size; i++)
|
||||
@ -489,92 +508,124 @@ Waifu2x::eWaifu2xError Waifu2x::init(int argc, char** argv, const std::string &M
|
||||
if (ScaleRatio <= 0.0)
|
||||
return eWaifu2xError_InvalidParameter;
|
||||
|
||||
mode = Mode;
|
||||
noise_level = NoiseLevel;
|
||||
scale_ratio = ScaleRatio;
|
||||
model_dir = ModelDir;
|
||||
process = Process;
|
||||
|
||||
crop_size = CropSize;
|
||||
batch_size = BatchSize;
|
||||
|
||||
output_size = crop_size - offset * 2;
|
||||
block_size = crop_size + layer_num * 2;
|
||||
original_width_height = 128 + layer_num * 2;
|
||||
|
||||
std::call_once(waifu2x_once_flag, [argc, argv]()
|
||||
try
|
||||
{
|
||||
assert(argc >= 1);
|
||||
mode = Mode;
|
||||
noise_level = NoiseLevel;
|
||||
scale_ratio = ScaleRatio;
|
||||
model_dir = ModelDir;
|
||||
process = Process;
|
||||
|
||||
int tmpargc = 1;
|
||||
char* tmpargvv[] = { argv[0] };
|
||||
char** tmpargv = tmpargvv;
|
||||
// glog等の初期化
|
||||
caffe::GlobalInit(&tmpargc, &tmpargv);
|
||||
});
|
||||
crop_size = CropSize;
|
||||
batch_size = BatchSize;
|
||||
|
||||
const auto cuDNNCheckStartTime = std::chrono::system_clock::now();
|
||||
output_size = crop_size - offset * 2;
|
||||
block_size = crop_size + layer_num * 2;
|
||||
original_width_height = 128 + layer_num * 2;
|
||||
|
||||
if (process == "gpu")
|
||||
{
|
||||
// cuDNNが使えそうならcuDNNを使う
|
||||
if (can_use_cuDNN() == eWaifu2xcuDNNError_OK)
|
||||
process = "cudnn";
|
||||
}
|
||||
|
||||
const auto cuDNNCheckEndTime = std::chrono::system_clock::now();
|
||||
|
||||
boost::filesystem::path mode_dir_path(model_dir);
|
||||
if (!mode_dir_path.is_absolute()) // model_dirが相対パスなら絶対パスに直す
|
||||
{
|
||||
// まずはカレントディレクトリ下にあるか探す
|
||||
mode_dir_path = boost::filesystem::absolute(model_dir);
|
||||
if (!boost::filesystem::exists(mode_dir_path) && argc >= 1) // 無かったらargv[0]から実行ファイルのあるフォルダを推定し、そのフォルダ下にあるか探す
|
||||
std::call_once(waifu2x_once_flag, [argc, argv]()
|
||||
{
|
||||
boost::filesystem::path a0(argv[0]);
|
||||
if (a0.is_absolute())
|
||||
mode_dir_path = a0.branch_path() / model_dir;
|
||||
assert(argc >= 1);
|
||||
|
||||
int tmpargc = 1;
|
||||
char* tmpargvv[] = { argv[0] };
|
||||
char** tmpargv = tmpargvv;
|
||||
// glog等の初期化
|
||||
caffe::GlobalInit(&tmpargc, &tmpargv);
|
||||
});
|
||||
|
||||
const auto cuDNNCheckStartTime = std::chrono::system_clock::now();
|
||||
|
||||
if (process == "gpu")
|
||||
{
|
||||
// cuDNNが使えそうならcuDNNを使う
|
||||
if (can_use_cuDNN() == eWaifu2xcuDNNError_OK)
|
||||
process = "cudnn";
|
||||
}
|
||||
|
||||
const auto cuDNNCheckEndTime = std::chrono::system_clock::now();
|
||||
|
||||
boost::filesystem::path mode_dir_path(model_dir);
|
||||
if (!mode_dir_path.is_absolute()) // model_dirが相対パスなら絶対パスに直す
|
||||
{
|
||||
// まずはカレントディレクトリ下にあるか探す
|
||||
mode_dir_path = boost::filesystem::absolute(model_dir);
|
||||
if (!boost::filesystem::exists(mode_dir_path) && argc >= 1) // 無かったらargv[0]から実行ファイルのあるフォルダを推定し、そのフォルダ下にあるか探す
|
||||
{
|
||||
boost::filesystem::path a0(argv[0]);
|
||||
if (a0.is_absolute())
|
||||
mode_dir_path = a0.branch_path() / model_dir;
|
||||
}
|
||||
}
|
||||
|
||||
if (!boost::filesystem::exists(mode_dir_path))
|
||||
return eWaifu2xError_FailedOpenModelFile;
|
||||
|
||||
if (process == "cpu")
|
||||
{
|
||||
caffe::Caffe::set_mode(caffe::Caffe::CPU);
|
||||
isCuda = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
caffe::Caffe::set_mode(caffe::Caffe::GPU);
|
||||
isCuda = true;
|
||||
}
|
||||
|
||||
if (mode == "noise" || mode == "noise_scale" || mode == "auto_scale")
|
||||
{
|
||||
const std::string model_path = (mode_dir_path / "srcnn.prototxt").string();
|
||||
const std::string param_path = (mode_dir_path / ("noise" + std::to_string(noise_level) + "_model.json")).string();
|
||||
|
||||
ret = ConstractNet(net_noise, model_path, process);
|
||||
if (ret != eWaifu2xError_OK)
|
||||
return ret;
|
||||
|
||||
ret = LoadParameter(net_noise, param_path);
|
||||
if (ret != eWaifu2xError_OK)
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (mode == "scale" || mode == "noise_scale" || mode == "auto_scale")
|
||||
{
|
||||
const std::string model_path = (mode_dir_path / "srcnn.prototxt").string();
|
||||
const std::string param_path = (mode_dir_path / "scale2.0x_model.json").string();
|
||||
|
||||
ret = ConstractNet(net_scale, model_path, process);
|
||||
if (ret != eWaifu2xError_OK)
|
||||
return ret;
|
||||
|
||||
ret = LoadParameter(net_scale, param_path);
|
||||
if (ret != eWaifu2xError_OK)
|
||||
return ret;
|
||||
}
|
||||
|
||||
const int input_block_plane_size = block_size * block_size;
|
||||
const int output_block_plane_size = crop_size * crop_size;
|
||||
|
||||
if (isCuda)
|
||||
{
|
||||
CUDA_CHECK_WAIFU2X(cudaHostAlloc(&block, sizeof(float) * input_block_plane_size * batch_size, cudaHostAllocWriteCombined));
|
||||
CUDA_CHECK_WAIFU2X(cudaHostAlloc(&dummy_data, sizeof(float) * input_block_plane_size * batch_size, cudaHostAllocWriteCombined));
|
||||
CUDA_CHECK_WAIFU2X(cudaHostAlloc(&out_block, sizeof(float) * output_block_plane_size * batch_size, cudaHostAllocDefault));
|
||||
}
|
||||
else
|
||||
{
|
||||
block = new float[input_block_plane_size * batch_size];
|
||||
dummy_data = new float[input_block_plane_size * batch_size];
|
||||
out_block = new float[output_block_plane_size * batch_size];
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < input_block_plane_size * batch_size; i++)
|
||||
dummy_data[i] = 0.0f;
|
||||
|
||||
is_inited = true;
|
||||
}
|
||||
|
||||
if (!boost::filesystem::exists(mode_dir_path))
|
||||
return eWaifu2xError_FailedOpenModelFile;
|
||||
|
||||
if (process == "cpu")
|
||||
caffe::Caffe::set_mode(caffe::Caffe::CPU);
|
||||
else
|
||||
caffe::Caffe::set_mode(caffe::Caffe::GPU);
|
||||
|
||||
if (mode == "noise" || mode == "noise_scale" || mode == "auto_scale")
|
||||
catch (...)
|
||||
{
|
||||
const std::string model_path = (mode_dir_path / "srcnn.prototxt").string();
|
||||
const std::string param_path = (mode_dir_path / ("noise" + std::to_string(noise_level) + "_model.json")).string();
|
||||
|
||||
ret = ConstractNet(net_noise, model_path, process);
|
||||
if (ret != eWaifu2xError_OK)
|
||||
return ret;
|
||||
|
||||
ret = LoadParameter(net_noise, param_path);
|
||||
if (ret != eWaifu2xError_OK)
|
||||
return ret;
|
||||
return eWaifu2xError_InvalidParameter;
|
||||
}
|
||||
|
||||
if (mode == "scale" || mode == "noise_scale" || mode == "auto_scale")
|
||||
{
|
||||
const std::string model_path = (mode_dir_path / "srcnn.prototxt").string();
|
||||
const std::string param_path = (mode_dir_path / "scale2.0x_model.json").string();
|
||||
|
||||
ret = ConstractNet(net_scale, model_path, process);
|
||||
if (ret != eWaifu2xError_OK)
|
||||
return ret;
|
||||
|
||||
ret = LoadParameter(net_scale, param_path);
|
||||
if (ret != eWaifu2xError_OK)
|
||||
return ret;
|
||||
}
|
||||
|
||||
is_inited = true;
|
||||
|
||||
return eWaifu2xError_OK;
|
||||
}
|
||||
|
||||
@ -583,6 +634,19 @@ void Waifu2x::destroy()
|
||||
net_noise.reset();
|
||||
net_scale.reset();
|
||||
|
||||
if (isCuda)
|
||||
{
|
||||
CUDA_HOST_SAFE_FREE(block);
|
||||
CUDA_HOST_SAFE_FREE(dummy_data);
|
||||
CUDA_HOST_SAFE_FREE(out_block);
|
||||
}
|
||||
else
|
||||
{
|
||||
SAFE_DELETE_WAIFU2X(block);
|
||||
SAFE_DELETE_WAIFU2X(dummy_data);
|
||||
SAFE_DELETE_WAIFU2X(out_block);
|
||||
}
|
||||
|
||||
is_inited = false;
|
||||
}
|
||||
|
||||
|
@ -65,9 +65,15 @@ private:
|
||||
std::string model_dir;
|
||||
std::string process;
|
||||
|
||||
bool isCuda;
|
||||
|
||||
boost::shared_ptr<caffe::Net<float>> net_noise;
|
||||
boost::shared_ptr<caffe::Net<float>> net_scale;
|
||||
|
||||
float *block;
|
||||
float *dummy_data;
|
||||
float *out_block;
|
||||
|
||||
private:
|
||||
eWaifu2xError LoadImage(cv::Mat &float_image, const std::string &input_file);
|
||||
eWaifu2xError CreateBrightnessImage(const cv::Mat &float_image, cv::Mat &im);
|
||||
|
Loading…
x
Reference in New Issue
Block a user