mirror of
https://github.com/lltcggie/waifu2x-caffe.git
synced 2025-06-25 21:22:47 +00:00
1081 lines
30 KiB
C++
1081 lines
30 KiB
C++
#include "waifu2x.h"
|
||
#include "stImage.h"
|
||
#include "cNet.h"
|
||
#include <caffe/caffe.hpp>
|
||
#include <cudnn.h>
|
||
#include <mutex>
|
||
#include <opencv2/core.hpp>
|
||
#include <tclap/CmdLine.h>
|
||
#include <boost/filesystem.hpp>
|
||
#include <boost/algorithm/string.hpp>
|
||
#include <chrono>
|
||
#include <unordered_map>
|
||
#include <cuda_runtime.h>
|
||
|
||
#include <boost/iostreams/stream.hpp>
|
||
#include <boost/iostreams/device/file_descriptor.hpp>
|
||
#include <msgpack.hpp>
|
||
|
||
#include <fcntl.h>
|
||
#include <zlib.h>
|
||
#ifdef _MSC_VER
|
||
#include <io.h>
|
||
#endif
|
||
|
||
//#if defined(WIN32) || defined(WIN64)
|
||
//#include <Windows.h>
|
||
//#endif
|
||
|
||
#define CV_VERSION_STR CVAUX_STR(CV_MAJOR_VERSION) CVAUX_STR(CV_MINOR_VERSION) CVAUX_STR(CV_SUBMINOR_VERSION)
|
||
|
||
// ƒrƒ‹ƒhƒ‚<C692>[ƒh
|
||
#ifdef _DEBUG
|
||
#define CV_EXT_STR "d.lib"
|
||
#else
|
||
#define CV_EXT_STR ".lib"
|
||
#endif
|
||
|
||
#ifdef _MSC_VER
|
||
|
||
#pragma comment(lib, "opencv_core" CV_VERSION_STR CV_EXT_STR)
|
||
#pragma comment(lib, "opencv_imgcodecs" CV_VERSION_STR CV_EXT_STR)
|
||
#pragma comment(lib, "opencv_imgproc" CV_VERSION_STR CV_EXT_STR)
|
||
//#pragma comment(lib, "IlmImf" CV_EXT_STR)
|
||
//#pragma comment(lib, "libjasper" CV_EXT_STR)
|
||
//#pragma comment(lib, "libjpeg" CV_EXT_STR)
|
||
//#pragma comment(lib, "libpng" CV_EXT_STR)
|
||
//#pragma comment(lib, "libtiff" CV_EXT_STR)
|
||
//#pragma comment(lib, "libwebp" CV_EXT_STR)
|
||
|
||
#pragma comment(lib, "libopenblas.dll.a")
|
||
#pragma comment(lib, "cudart.lib")
|
||
#pragma comment(lib, "curand.lib")
|
||
#pragma comment(lib, "cublas.lib")
|
||
#pragma comment(lib, "cudnn.lib")
|
||
|
||
#ifdef _DEBUG
|
||
#pragma comment(lib, "caffe-d.lib")
|
||
#pragma comment(lib, "proto-d.lib")
|
||
#pragma comment(lib, "libboost_system-vc120-mt-gd-1_59.lib")
|
||
#pragma comment(lib, "libboost_thread-vc120-mt-gd-1_59.lib")
|
||
#pragma comment(lib, "libboost_filesystem-vc120-mt-gd-1_59.lib")
|
||
#pragma comment(lib, "glogd.lib")
|
||
#pragma comment(lib, "gflagsd.lib")
|
||
#pragma comment(lib, "libprotobufd.lib")
|
||
#pragma comment(lib, "libhdf5_hl_D.lib")
|
||
#pragma comment(lib, "libhdf5_D.lib")
|
||
#pragma comment(lib, "zlibstaticd.lib")
|
||
|
||
#pragma comment(lib, "libboost_iostreams-vc120-mt-gd-1_59.lib")
|
||
#else
|
||
#pragma comment(lib, "caffe.lib")
|
||
#pragma comment(lib, "proto.lib")
|
||
#pragma comment(lib, "libboost_system-vc120-mt-1_59.lib")
|
||
#pragma comment(lib, "libboost_thread-vc120-mt-1_59.lib")
|
||
#pragma comment(lib, "libboost_filesystem-vc120-mt-1_59.lib")
|
||
#pragma comment(lib, "glog.lib")
|
||
#pragma comment(lib, "gflags.lib")
|
||
#pragma comment(lib, "libprotobuf.lib")
|
||
#pragma comment(lib, "libhdf5_hl.lib")
|
||
#pragma comment(lib, "libhdf5.lib")
|
||
#pragma comment(lib, "zlibstatic.lib")
|
||
|
||
#pragma comment(lib, "libboost_iostreams-vc120-mt-1_59.lib")
|
||
#endif
|
||
#endif
|
||
|
||
const int ScaleBase = 2; // TODO: ƒ‚ƒfƒ‹‚ÌŠg‘å—¦‚É‚æ‚Á‚ĉ•ςł«‚邿‚¤‚É‚·‚é
|
||
|
||
// “ü—͉摜‚ɒljÁ‚·‚éƒpƒfƒBƒ“ƒO
|
||
const int OuterPadding = 0;
|
||
|
||
// <20>Å’áŒÀ•K—v‚ÈCUDAƒhƒ‰ƒCƒo<C692>[‚̃o<C692>[ƒWƒ‡ƒ“
|
||
const int MinCudaDriverVersion = 7050;
|
||
|
||
static std::once_flag waifu2x_once_flag;
|
||
static std::once_flag waifu2x_cudnn_once_flag;
|
||
static std::once_flag waifu2x_cuda_once_flag;
|
||
|
||
std::string Waifu2x::ExeDir;
|
||
|
||
|
||
#ifndef CUDA_CHECK_WAIFU2X
|
||
#define CUDA_CHECK_WAIFU2X(condition) \
|
||
do { \
|
||
cudaError_t error = condition; \
|
||
if(error != cudaSuccess) throw error; \
|
||
} while (0)
|
||
#endif
|
||
|
||
#define CUDA_HOST_SAFE_FREE(ptr) \
|
||
do { \
|
||
if (ptr) { \
|
||
cudaFreeHost(ptr); \
|
||
ptr = nullptr; \
|
||
} \
|
||
} while (0)
|
||
|
||
#define SAFE_DELETE_WAIFU2X(ptr) \
|
||
do { \
|
||
if (ptr) { \
|
||
delete [] ptr; \
|
||
ptr = nullptr; \
|
||
} \
|
||
} while (0)
|
||
|
||
namespace
|
||
{
|
||
class IgnoreErrorCV
|
||
{
|
||
private:
|
||
static int handleError(int status, const char* func_name,
|
||
const char* err_msg, const char* file_name,
|
||
int line, void* userdata)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
public:
|
||
IgnoreErrorCV()
|
||
{
|
||
cv::redirectError(handleError);
|
||
}
|
||
};
|
||
|
||
IgnoreErrorCV g_IgnoreErrorCV;
|
||
|
||
class CudaDeviceSet
|
||
{
|
||
private:
|
||
int orgDevice;
|
||
bool mIsSet;
|
||
|
||
public:
|
||
CudaDeviceSet(const std::string &process, const int devno) : orgDevice(0), mIsSet(false)
|
||
{
|
||
if (process == "gpu" || process == "cudnn")
|
||
{
|
||
int count = 0;
|
||
if (cudaGetDeviceCount(&count) != CUDA_SUCCESS)
|
||
return;
|
||
|
||
if (devno >= count || count < 0)
|
||
return;
|
||
|
||
if (cudaGetDevice(&orgDevice) != CUDA_SUCCESS)
|
||
return;
|
||
|
||
if (cudaSetDevice(devno) != CUDA_SUCCESS)
|
||
return;
|
||
|
||
mIsSet = true;
|
||
}
|
||
}
|
||
|
||
~CudaDeviceSet()
|
||
{
|
||
if (mIsSet)
|
||
cudaSetDevice(orgDevice);
|
||
}
|
||
};
|
||
}
|
||
|
||
class CcuDNNAlgorithmElement
|
||
{
|
||
private:
|
||
typedef std::unordered_map<uint64_t, uint8_t> AlgoMap;
|
||
|
||
AlgoMap mAlgo;
|
||
bool mIsModefy;
|
||
|
||
uint8_t kernel_w;
|
||
uint8_t kernel_h;
|
||
uint8_t pad_w;
|
||
uint8_t pad_h;
|
||
uint8_t stride_w;
|
||
uint8_t stride_h;
|
||
uint16_t batch_size;
|
||
|
||
private:
|
||
static uint64_t InfoToKey(uint16_t num_input, uint16_t num_output, uint16_t width, uint16_t height)
|
||
{
|
||
return (uint64_t)num_input << 8 * 3 | (uint64_t)num_output << 8 * 2 | (uint64_t)width << 8 * 1 | (uint64_t)height << 8 * 0;
|
||
}
|
||
|
||
public:
|
||
CcuDNNAlgorithmElement() : mIsModefy(false)
|
||
{}
|
||
~CcuDNNAlgorithmElement()
|
||
{}
|
||
|
||
void SetLayerData(uint8_t kernel_w, uint8_t kernel_h, uint8_t pad_w, uint8_t pad_h, uint8_t stride_w, uint8_t stride_h, uint16_t batch_size)
|
||
{
|
||
this->kernel_w = kernel_w;
|
||
this->kernel_h = kernel_h;
|
||
this->pad_w = pad_w;
|
||
this->pad_h = pad_h;
|
||
this->stride_w = stride_w;
|
||
this->stride_h = stride_h;
|
||
this->batch_size = batch_size;
|
||
}
|
||
|
||
void GetLayerData(uint8_t &kernel_w, uint8_t &kernel_h, uint8_t &pad_w, uint8_t &pad_h, uint8_t &stride_w, uint8_t &stride_h, uint16_t &batch_size)
|
||
{
|
||
kernel_w = this->kernel_w;
|
||
kernel_h = this->kernel_h;
|
||
pad_w = this->pad_w;
|
||
pad_h = this->pad_h;
|
||
stride_w = this->stride_w;
|
||
stride_h = this->stride_h;
|
||
batch_size = this->batch_size;
|
||
}
|
||
|
||
int GetAlgorithm(uint16_t num_input, uint16_t num_output, uint16_t width, uint16_t height) const
|
||
{
|
||
const uint64_t key = InfoToKey(num_input, num_output, width, height);
|
||
const auto it = mAlgo.find(key);
|
||
if (it != mAlgo.end())
|
||
return it->second;
|
||
|
||
return -1;
|
||
}
|
||
|
||
void SetAlgorithm(uint8_t algo, uint16_t num_input, uint16_t num_output, uint16_t width, uint16_t height)
|
||
{
|
||
const uint64_t key = InfoToKey(num_input, num_output, width, height);
|
||
auto it = mAlgo.find(key);
|
||
if (it == mAlgo.end() || it->second != algo)
|
||
mIsModefy = true;
|
||
|
||
mAlgo[key] = algo;
|
||
}
|
||
|
||
bool IsModefy() const
|
||
{
|
||
return mIsModefy;
|
||
}
|
||
|
||
void Saved()
|
||
{
|
||
mIsModefy = false;
|
||
}
|
||
|
||
MSGPACK_DEFINE(mAlgo, kernel_w, kernel_h, pad_w, pad_h, stride_w, stride_h, batch_size);
|
||
};
|
||
|
||
class CcuDNNAlgorithm
|
||
{
|
||
private:
|
||
typedef std::unordered_map<uint64_t, CcuDNNAlgorithmElement> AlgoEmlMap;
|
||
|
||
AlgoEmlMap mAlgoEmlMap;
|
||
std::string mDataPath;
|
||
|
||
private:
|
||
static uint64_t InfoToKey(uint8_t kernel_w, uint8_t kernel_h, uint8_t pad_w, uint8_t pad_h, uint8_t stride_w, uint8_t stride_h, uint16_t batch_size)
|
||
{
|
||
return
|
||
(uint64_t)kernel_w << 8 * 7 | (uint64_t)kernel_h << 8 * 6 |
|
||
(uint64_t)pad_w << 8 * 5 | (uint64_t)pad_h << 8 * 4 |
|
||
(uint64_t)stride_w << 8 * 3 | (uint64_t)stride_h << 8 * 2 |
|
||
(uint64_t)batch_size;
|
||
}
|
||
|
||
std::string GetDataPath(uint8_t kernel_w, uint8_t kernel_h, uint8_t pad_w, uint8_t pad_h, uint8_t stride_w, uint8_t stride_h, uint16_t batch_size) const
|
||
{
|
||
std::string SavePath = mDataPath;
|
||
SavePath +=
|
||
std::to_string(kernel_w) + "x" + std::to_string(kernel_h) + " " +
|
||
std::to_string(pad_w) + "x" + std::to_string(pad_w) + " " +
|
||
std::to_string(stride_w) + "x" + std::to_string(stride_w) + " " +
|
||
std::to_string(batch_size);
|
||
SavePath += ".dat";
|
||
|
||
return SavePath;
|
||
}
|
||
|
||
bool Load(uint8_t kernel_w, uint8_t kernel_h, uint8_t pad_w, uint8_t pad_h, uint8_t stride_w, uint8_t stride_h, uint16_t batch_size)
|
||
{
|
||
const std::string SavePath = GetDataPath(kernel_w, kernel_h, pad_w, pad_h, stride_w, stride_h, batch_size);
|
||
|
||
std::vector<char> sbuf;
|
||
|
||
FILE *fp = fopen(SavePath.c_str(), "rb");
|
||
if (!fp)
|
||
return false;
|
||
|
||
fseek(fp, 0, SEEK_END);
|
||
const auto size = ftell(fp);
|
||
fseek(fp, 0, SEEK_SET);
|
||
|
||
sbuf.resize(size);
|
||
|
||
if (fread(sbuf.data(), 1, sbuf.size(), fp) != sbuf.size())
|
||
{
|
||
fclose(fp);
|
||
return false;
|
||
}
|
||
|
||
fclose(fp);
|
||
|
||
CcuDNNAlgorithmElement elm;
|
||
msgpack::unpack(sbuf.data(), sbuf.size()).get().convert(elm);
|
||
sbuf.clear();
|
||
|
||
const uint64_t key = InfoToKey(kernel_w, kernel_h, pad_w, pad_h, stride_w, stride_h, batch_size);
|
||
mAlgoEmlMap[key] = std::move(elm);
|
||
|
||
return true;
|
||
}
|
||
|
||
public:
|
||
CcuDNNAlgorithm()
|
||
{}
|
||
|
||
~CcuDNNAlgorithm()
|
||
{
|
||
Save();
|
||
}
|
||
|
||
int GetAlgorithm(uint16_t num_input, uint16_t num_output, uint16_t batch_size,
|
||
uint16_t width, uint16_t height, uint16_t kernel_w, uint16_t kernel_h, uint16_t pad_w, uint16_t pad_h, uint16_t stride_w, uint16_t stride_h)
|
||
{
|
||
const uint64_t key = InfoToKey(kernel_w, kernel_h, pad_w, pad_h, stride_w, stride_h, batch_size);
|
||
const auto it = mAlgoEmlMap.find(key);
|
||
if (it != mAlgoEmlMap.end())
|
||
{
|
||
const auto &elm = it->second;
|
||
return elm.GetAlgorithm(num_input, num_output, width, height);
|
||
}
|
||
|
||
if (Load(kernel_w, kernel_h, pad_w, pad_h, stride_w, stride_h, batch_size))
|
||
return mAlgoEmlMap[key].GetAlgorithm(num_input, num_output, width, height);
|
||
|
||
return -1;
|
||
}
|
||
|
||
void SetAlgorithm(int algo, uint16_t num_input, uint16_t num_output, uint16_t batch_size,
|
||
uint16_t width, uint16_t height, uint16_t kernel_w, uint16_t kernel_h, uint16_t pad_w, uint16_t pad_h, uint16_t stride_w, uint16_t stride_h)
|
||
{
|
||
if (algo < 0 || algo > 255)
|
||
return;
|
||
|
||
const uint64_t key = InfoToKey(kernel_w, kernel_h, pad_w, pad_h, stride_w, stride_h, batch_size);
|
||
auto &eml = mAlgoEmlMap[key];
|
||
eml.SetAlgorithm(algo, num_input, num_output, width, height);
|
||
eml.SetLayerData(kernel_w, kernel_h, pad_w, pad_h, stride_w, stride_h, batch_size);
|
||
}
|
||
|
||
void Save()
|
||
{
|
||
for (auto &p : mAlgoEmlMap)
|
||
{
|
||
auto &eml = p.second;
|
||
if (eml.IsModefy())
|
||
{
|
||
msgpack::sbuffer sbuf;
|
||
msgpack::pack(sbuf, eml);
|
||
|
||
uint8_t kernel_w, kernel_h, pad_w, pad_h, stride_w, stride_h;
|
||
uint16_t batch_size;
|
||
eml.GetLayerData(kernel_w, kernel_h, pad_w, pad_h, stride_w, stride_h, batch_size);
|
||
|
||
const std::string SavePath = GetDataPath(kernel_w, kernel_h, pad_w, pad_h, stride_w, stride_h, batch_size);
|
||
FILE *fp = fopen(SavePath.c_str(), "wb");
|
||
if (fp)
|
||
{
|
||
fwrite(sbuf.data(), 1, sbuf.size(), fp);
|
||
fclose(fp);
|
||
|
||
eml.Saved();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void SetDataPath(std::string path)
|
||
{
|
||
mDataPath = path;
|
||
}
|
||
};
|
||
|
||
CcuDNNAlgorithm g_ConvCcuDNNAlgorithm;
|
||
CcuDNNAlgorithm g_DeconvCcuDNNAlgorithm;
|
||
|
||
|
||
// CUDA‚ªŽg‚¦‚é‚©ƒ`ƒFƒbƒN
|
||
Waifu2x::eWaifu2xCudaError Waifu2x::can_use_CUDA()
|
||
{
|
||
static eWaifu2xCudaError CudaFlag = eWaifu2xCudaError_NotFind;
|
||
std::call_once(waifu2x_cuda_once_flag, [&]()
|
||
{
|
||
int driverVersion = 0;
|
||
if (cudaDriverGetVersion(&driverVersion) == cudaSuccess)
|
||
{
|
||
if (driverVersion > 0)
|
||
{
|
||
int runtimeVersion;
|
||
if (cudaRuntimeGetVersion(&runtimeVersion) == cudaSuccess)
|
||
{
|
||
if (runtimeVersion >= MinCudaDriverVersion && driverVersion >= runtimeVersion)
|
||
{
|
||
cudaDeviceProp prop;
|
||
cudaGetDeviceProperties(&prop, 0);
|
||
if (prop.major >= 2)
|
||
CudaFlag = eWaifu2xCudaError_OK;
|
||
else
|
||
CudaFlag = eWaifu2xCudaError_OldDevice;
|
||
}
|
||
else
|
||
CudaFlag = eWaifu2xCudaError_OldVersion;
|
||
}
|
||
else
|
||
CudaFlag = eWaifu2xCudaError_NotFind;
|
||
}
|
||
else
|
||
CudaFlag = eWaifu2xCudaError_NotFind;
|
||
}
|
||
else
|
||
CudaFlag = eWaifu2xCudaError_NotFind;
|
||
});
|
||
|
||
return CudaFlag;
|
||
}
|
||
|
||
// cuDNN‚ªŽg‚¦‚é‚©ƒ`ƒFƒbƒN<C692>BŒ»<C592>óWindows‚Ì‚Ý
|
||
Waifu2x::eWaifu2xcuDNNError Waifu2x::can_use_cuDNN()
|
||
{
|
||
static eWaifu2xcuDNNError cuDNNFlag = eWaifu2xcuDNNError_NotFind;
|
||
std::call_once(waifu2x_cudnn_once_flag, [&]()
|
||
{
|
||
#if defined(WIN32) || defined(WIN64)
|
||
HMODULE hModule = LoadLibrary(TEXT(CUDNN_DLL_NAME));
|
||
if (hModule != NULL)
|
||
{
|
||
typedef cudnnStatus_t(__stdcall * cudnnCreateType)(cudnnHandle_t *);
|
||
typedef cudnnStatus_t(__stdcall * cudnnDestroyType)(cudnnHandle_t);
|
||
typedef uint64_t(__stdcall * cudnnGetVersionType)();
|
||
|
||
cudnnCreateType cudnnCreateFunc = (cudnnCreateType)GetProcAddress(hModule, "cudnnCreate");
|
||
cudnnDestroyType cudnnDestroyFunc = (cudnnDestroyType)GetProcAddress(hModule, "cudnnDestroy");
|
||
cudnnGetVersionType cudnnGetVersionFunc = (cudnnGetVersionType)GetProcAddress(hModule, "cudnnGetVersion");
|
||
if (cudnnCreateFunc != nullptr && cudnnDestroyFunc != nullptr && cudnnGetVersionFunc != nullptr)
|
||
{
|
||
if (cudnnGetVersionFunc() >= 3000)
|
||
{
|
||
cudnnHandle_t h;
|
||
if (cudnnCreateFunc(&h) == CUDNN_STATUS_SUCCESS)
|
||
{
|
||
if (cudnnDestroyFunc(h) == CUDNN_STATUS_SUCCESS)
|
||
cuDNNFlag = eWaifu2xcuDNNError_OK;
|
||
else
|
||
cuDNNFlag = eWaifu2xcuDNNError_CannotCreate;
|
||
}
|
||
else
|
||
cuDNNFlag = eWaifu2xcuDNNError_CannotCreate;
|
||
}
|
||
else
|
||
cuDNNFlag = eWaifu2xcuDNNError_OldVersion;
|
||
}
|
||
else
|
||
cuDNNFlag = eWaifu2xcuDNNError_NotFind;
|
||
|
||
FreeLibrary(hModule);
|
||
}
|
||
#endif
|
||
});
|
||
|
||
return cuDNNFlag;
|
||
}
|
||
|
||
void Waifu2x::init_liblary(int argc, char** argv)
|
||
{
|
||
if (argc > 0)
|
||
ExeDir = argv[0];
|
||
|
||
std::call_once(waifu2x_once_flag, [argc, argv]()
|
||
{
|
||
assert(argc >= 1);
|
||
|
||
int tmpargc = 1;
|
||
char* tmpargvv[] = {argv[0]};
|
||
char** tmpargv = tmpargvv;
|
||
// glog“™‚Ì<E2809A>‰Šú‰»
|
||
caffe::GlobalInit(&tmpargc, &tmpargv);
|
||
});
|
||
}
|
||
|
||
void Waifu2x::quit_liblary()
|
||
{
|
||
g_ConvCcuDNNAlgorithm.Save();
|
||
g_DeconvCcuDNNAlgorithm.Save();
|
||
}
|
||
|
||
|
||
Waifu2x::Waifu2x() : mIsInited(false), mNoiseLevel(0), mIsCuda(false), mOutputBlock(nullptr), mOutputBlockSize(0), mGPUNo(0)
|
||
{}
|
||
|
||
Waifu2x::~Waifu2x()
|
||
{
|
||
Destroy();
|
||
}
|
||
|
||
Waifu2x::eWaifu2xError Waifu2x::Init(const eWaifu2xModelType mode, const int noise_level,
|
||
const boost::filesystem::path &model_dir, const std::string &process, const int GPUNo)
|
||
{
|
||
Waifu2x::eWaifu2xError ret;
|
||
|
||
if (mIsInited)
|
||
return Waifu2x::eWaifu2xError_OK;
|
||
|
||
try
|
||
{
|
||
std::string Process = process;
|
||
const auto cuDNNCheckStartTime = std::chrono::system_clock::now();
|
||
|
||
if (Process == "gpu")
|
||
{
|
||
if (can_use_CUDA() != eWaifu2xCudaError_OK)
|
||
return Waifu2x::eWaifu2xError_FailedCudaCheck;
|
||
// cuDNN‚ªŽg‚¦‚»‚¤‚È‚çcuDNN‚ðŽg‚¤
|
||
else if (can_use_cuDNN() == eWaifu2xcuDNNError_OK)
|
||
Process = "cudnn";
|
||
}
|
||
|
||
mMode = mode;
|
||
mNoiseLevel = noise_level;
|
||
mProcess = Process;
|
||
mGPUNo = GPUNo;
|
||
|
||
const auto cuDNNCheckEndTime = std::chrono::system_clock::now();
|
||
|
||
boost::filesystem::path exe_dir_path(ExeDir);
|
||
if (exe_dir_path.is_absolute())
|
||
exe_dir_path = exe_dir_path.branch_path();
|
||
|
||
if (Process == "cudnn" && boost::filesystem::exists(exe_dir_path))
|
||
{
|
||
const boost::filesystem::path cudnn_data_dir_path(exe_dir_path / "cudnn_data");
|
||
|
||
bool isOK = false;
|
||
if (boost::filesystem::exists(cudnn_data_dir_path))
|
||
isOK = true;
|
||
|
||
if (!isOK)
|
||
{
|
||
boost::system::error_code error;
|
||
const bool result = boost::filesystem::create_directory(cudnn_data_dir_path, error);
|
||
if (result && !error)
|
||
isOK = true;
|
||
}
|
||
|
||
if(isOK)
|
||
{
|
||
cudaDeviceProp prop;
|
||
if (cudaGetDeviceProperties(&prop, mGPUNo) == cudaSuccess)
|
||
{
|
||
std::string conv_filename(prop.name);
|
||
conv_filename += " conv ";
|
||
|
||
std::string deconv_filename(prop.name);
|
||
deconv_filename += " deconv ";
|
||
|
||
const boost::filesystem::path conv_data_path = cudnn_data_dir_path / conv_filename;
|
||
const boost::filesystem::path deconv_data_path = cudnn_data_dir_path / deconv_filename;
|
||
|
||
g_ConvCcuDNNAlgorithm.SetDataPath(conv_data_path.string());
|
||
g_DeconvCcuDNNAlgorithm.SetDataPath(deconv_data_path.string());
|
||
}
|
||
}
|
||
}
|
||
|
||
const boost::filesystem::path mode_dir_path(GetModeDirPath(model_dir));
|
||
if (!boost::filesystem::exists(mode_dir_path))
|
||
return Waifu2x::eWaifu2xError_FailedOpenModelFile;
|
||
|
||
CudaDeviceSet devset(process, mGPUNo);
|
||
|
||
if (mProcess == "cpu")
|
||
{
|
||
caffe::Caffe::set_mode(caffe::Caffe::CPU);
|
||
mIsCuda = false;
|
||
}
|
||
else
|
||
{
|
||
caffe::Caffe::set_mode(caffe::Caffe::GPU);
|
||
mIsCuda = true;
|
||
}
|
||
|
||
caffe::Caffe::SetGetcuDNNAlgorithmFunc(GetcuDNNAlgorithm);
|
||
caffe::Caffe::SetSetcuDNNAlgorithmFunc(SetcuDNNAlgorithm);
|
||
|
||
mInputPlane = 0;
|
||
mMaxNetOffset = 0;
|
||
|
||
const boost::filesystem::path info_path = GetInfoPath(mode_dir_path);
|
||
|
||
stInfo info;
|
||
ret = cNet::GetInfo(info_path, info);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
mHasNoiseScale = info.has_noise_scale;
|
||
mInputPlane = info.channels;
|
||
|
||
if (mode == eWaifu2xModelTypeNoise || mode == eWaifu2xModelTypeNoiseScale || mode == eWaifu2xModelTypeAutoScale)
|
||
{
|
||
std::string base_name;
|
||
|
||
mNoiseNet.reset(new cNet);
|
||
|
||
eWaifu2xModelType Mode = mode;
|
||
if (info.has_noise_scale) // ƒmƒCƒY<C692>œ‹Ž‚ÆŠg‘å‚𓯎ž‚É<E2809A>s‚¤
|
||
{
|
||
// ƒmƒCƒY<C692>œ‹ŽŠg‘åƒlƒbƒg‚Ì<E2809A>\’z‚ÍeWaifu2xModelTypeNoiseScale‚ðŽw’è‚·‚é•K—v‚ª‚ ‚é
|
||
Mode = eWaifu2xModelTypeNoiseScale;
|
||
base_name = "noise" + std::to_string(noise_level) + "_scale2.0x_model";
|
||
}
|
||
else // ƒmƒCƒY<C692>œ‹Ž‚¾‚¯
|
||
{
|
||
Mode = eWaifu2xModelTypeNoise;
|
||
base_name = "noise" + std::to_string(noise_level) + "_model";
|
||
}
|
||
|
||
const boost::filesystem::path model_path = mode_dir_path / (base_name + ".prototxt");
|
||
const boost::filesystem::path param_path = mode_dir_path / (base_name + ".json");
|
||
|
||
ret = mNoiseNet->ConstractNet(Mode, model_path, param_path, info, mProcess);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
mMaxNetOffset = mNoiseNet->GetNetOffset();
|
||
}
|
||
|
||
// noise_scale‚ðŽ<C3B0>‚Á‚Ä‚¢‚é<E2809A>ê<EFBFBD>‡‚̓¿ƒ`ƒƒƒ“ƒlƒ‹‚ÌŠg‘å‚Ì‚½‚ß‚ÉmScaleNet‚à<E2809A>\’z‚·‚é•K—v‚ª‚ ‚é
|
||
if (info.has_noise_scale || mode == eWaifu2xModelTypeScale || mode == eWaifu2xModelTypeNoiseScale || mode == eWaifu2xModelTypeAutoScale)
|
||
{
|
||
const std::string base_name = "scale2.0x_model";
|
||
|
||
const boost::filesystem::path model_path = mode_dir_path / (base_name + ".prototxt");
|
||
const boost::filesystem::path param_path = mode_dir_path / (base_name + ".json");
|
||
|
||
mScaleNet.reset(new cNet);
|
||
|
||
ret = mScaleNet->ConstractNet(eWaifu2xModelTypeScale, model_path, param_path, info, mProcess);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
assert(mInputPlane == 0 || mInputPlane == mScaleNet->GetInputPlane());
|
||
|
||
mMaxNetOffset = std::max(mScaleNet->GetNetOffset(), mMaxNetOffset);
|
||
}
|
||
else
|
||
{
|
||
|
||
}
|
||
|
||
mIsInited = true;
|
||
}
|
||
catch (...)
|
||
{
|
||
return Waifu2x::eWaifu2xError_InvalidParameter;
|
||
}
|
||
|
||
return Waifu2x::eWaifu2xError_OK;
|
||
}
|
||
|
||
boost::filesystem::path Waifu2x::GetModeDirPath(const boost::filesystem::path &model_dir)
|
||
{
|
||
boost::filesystem::path mode_dir_path(model_dir);
|
||
if (!mode_dir_path.is_absolute()) // model_dir‚ª‘Š‘ÎƒpƒX‚È‚ç<E2809A>â‘΃pƒX‚É’¼‚·
|
||
{
|
||
// ‚Ü‚¸‚̓JƒŒƒ“ƒgƒfƒBƒŒƒNƒgƒŠ‰º‚É‚ ‚é‚©’T‚·
|
||
mode_dir_path = boost::filesystem::absolute(model_dir);
|
||
if (!boost::filesystem::exists(mode_dir_path) && !ExeDir.empty()) // –³‚©‚Á‚½‚çargv[0]‚©‚çŽÀ<C5BD>sƒtƒ@ƒCƒ‹‚Ì‚ ‚éƒtƒHƒ‹ƒ_‚ð<E2809A>„’肵<E2809A>A‚»‚̃tƒHƒ‹ƒ_‰º‚É‚ ‚é‚©’T‚·
|
||
{
|
||
boost::filesystem::path a0(ExeDir);
|
||
if (a0.is_absolute())
|
||
mode_dir_path = a0.branch_path() / model_dir;
|
||
}
|
||
}
|
||
|
||
return mode_dir_path;
|
||
}
|
||
|
||
boost::filesystem::path Waifu2x::GetInfoPath(const boost::filesystem::path &mode_dir_path)
|
||
{
|
||
const boost::filesystem::path info_path = mode_dir_path / "info.json";
|
||
|
||
return info_path;
|
||
}
|
||
|
||
Waifu2x::eWaifu2xError Waifu2x::waifu2x(const boost::filesystem::path &input_file, const boost::filesystem::path &output_file,
|
||
const boost::optional<double> scale_ratio, const boost::optional<int> scale_width, const boost::optional<int> scale_height,
|
||
const waifu2xCancelFunc cancel_func, const int crop_w, const int crop_h,
|
||
const boost::optional<int> output_quality, const int output_depth, const bool use_tta,
|
||
const int batch_size)
|
||
{
|
||
Waifu2x::eWaifu2xError ret;
|
||
|
||
if (!mIsInited)
|
||
return Waifu2x::eWaifu2xError_NotInitialized;
|
||
|
||
stImage image;
|
||
ret = image.Load(input_file);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
image.Preprocess(mInputPlane, mMaxNetOffset);
|
||
|
||
const bool isReconstructNoise = mMode == eWaifu2xModelTypeNoise || mMode == eWaifu2xModelTypeNoiseScale || (mMode == eWaifu2xModelTypeAutoScale && image.RequestDenoise());
|
||
const bool isReconstructScale = mMode == eWaifu2xModelTypeScale || mMode == eWaifu2xModelTypeNoiseScale || mMode == eWaifu2xModelTypeAutoScale;
|
||
|
||
double Factor = CalcScaleRatio(scale_ratio, scale_width, scale_height, image);
|
||
|
||
if (!isReconstructScale)
|
||
Factor = 1.0;
|
||
|
||
cv::Mat reconstruct_image;
|
||
ret = ReconstructImage(Factor, crop_w, crop_h, use_tta, batch_size, isReconstructNoise, isReconstructScale, cancel_func, image);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
image.Postprocess(mInputPlane, Factor, output_depth);
|
||
|
||
ret = image.Save(output_file, output_quality);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
return Waifu2x::eWaifu2xError_OK;
|
||
}
|
||
|
||
Waifu2x::eWaifu2xError Waifu2x::waifu2x(const double factor, const void* source, void* dest, const int width, const int height,
|
||
const int in_channel, const int in_stride, const int out_channel, const int out_stride,
|
||
const int crop_w, const int crop_h, const bool use_tta, const int batch_size)
|
||
{
|
||
Waifu2x::eWaifu2xError ret;
|
||
|
||
if (!mIsInited)
|
||
return Waifu2x::eWaifu2xError_NotInitialized;
|
||
|
||
stImage image;
|
||
ret = image.Load(source, width, height, in_channel, in_stride);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
image.Preprocess(mInputPlane, mMaxNetOffset);
|
||
|
||
const bool isReconstructNoise = mMode == eWaifu2xModelTypeNoise || mMode == eWaifu2xModelTypeNoiseScale;
|
||
const bool isReconstructScale = mMode == eWaifu2xModelTypeScale || mMode == eWaifu2xModelTypeNoiseScale || mMode == eWaifu2xModelTypeAutoScale;
|
||
|
||
double Factor = factor;
|
||
if (!isReconstructScale)
|
||
Factor = 1.0;
|
||
|
||
cv::Mat reconstruct_image;
|
||
ret = ReconstructImage(Factor, crop_w, crop_h, use_tta, batch_size, isReconstructNoise, isReconstructScale, nullptr, image);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
image.Postprocess(mInputPlane, Factor, 8);
|
||
|
||
cv::Mat out_image = image.GetEndImage();
|
||
image.Clear();
|
||
|
||
// <20>o—Í”z—ñ‚Ö<E2809A>‘‚«<E2809A>ž‚Ý
|
||
{
|
||
const auto width = out_image.size().width;
|
||
const auto stride = out_image.step1();
|
||
for (int i = 0; i < out_image.size().height; i++)
|
||
memcpy((uint8_t *)dest + out_stride * i, out_image.data + stride * i, stride);
|
||
}
|
||
|
||
return Waifu2x::eWaifu2xError_OK;
|
||
}
|
||
|
||
double Waifu2x::CalcScaleRatio(const boost::optional<double> scale_ratio, const boost::optional<int> scale_width, const boost::optional<int> scale_height,
|
||
const stImage &image)
|
||
{
|
||
if (scale_ratio)
|
||
return *scale_ratio;
|
||
|
||
if (scale_width)
|
||
return image.GetScaleFromWidth(*scale_width);
|
||
|
||
if(scale_height)
|
||
return image.GetScaleFromWidth(*scale_height);
|
||
|
||
return 1.0;
|
||
}
|
||
|
||
int Waifu2x::GetcuDNNAlgorithm(const char * layer_name, int num_input, int num_output, int batch_size,
|
||
int width, int height, int kernel_w, int kernel_h, int pad_w, int pad_h, int stride_w, int stride_h)
|
||
{
|
||
// ExeDir;
|
||
if (strcmp(layer_name, "Deconvolution") == 0)
|
||
return g_ConvCcuDNNAlgorithm.GetAlgorithm(num_input, num_output, batch_size, width, height, kernel_w, kernel_h, pad_w, pad_h, stride_w, stride_h);
|
||
else if (strcmp(layer_name, "Convolution") == 0)
|
||
return g_DeconvCcuDNNAlgorithm.GetAlgorithm(num_input, num_output, batch_size, width, height, kernel_w, kernel_h, pad_w, pad_h, stride_w, stride_h);
|
||
|
||
return -1;
|
||
}
|
||
|
||
void Waifu2x::SetcuDNNAlgorithm(int algo, const char * layer_name, int num_input, int num_output, int batch_size,
|
||
int width, int height, int kernel_w, int kernel_h, int pad_w, int pad_h, int stride_w, int stride_h)
|
||
{
|
||
if (strcmp(layer_name, "Deconvolution") == 0)
|
||
return g_ConvCcuDNNAlgorithm.SetAlgorithm(algo, num_input, num_output, batch_size, width, height, kernel_w, kernel_h, pad_w, pad_h, stride_w, stride_h);
|
||
else if (strcmp(layer_name, "Convolution") == 0)
|
||
return g_DeconvCcuDNNAlgorithm.SetAlgorithm(algo, num_input, num_output, batch_size, width, height, kernel_w, kernel_h, pad_w, pad_h, stride_w, stride_h);
|
||
}
|
||
|
||
Waifu2x::eWaifu2xError Waifu2x::ReconstructImage(const double factor, const int crop_w, const int crop_h, const bool use_tta, const int batch_size,
|
||
const bool isReconstructNoise, const bool isReconstructScale, const Waifu2x::waifu2xCancelFunc cancel_func, stImage &image)
|
||
{
|
||
Waifu2x::eWaifu2xError ret;
|
||
|
||
double Factor = factor;
|
||
|
||
if (isReconstructNoise)
|
||
{
|
||
if (!mHasNoiseScale) // ƒmƒCƒY<C692>œ‹Ž‚¾‚¯
|
||
{
|
||
cv::Mat im;
|
||
cv::Size_<int> size;
|
||
image.GetScalePaddingedRGB(im, size, mNoiseNet->GetNetOffset(), OuterPadding, crop_w, crop_h, 1);
|
||
|
||
ret = ProcessNet(mNoiseNet, crop_w, crop_h, use_tta, batch_size, im);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
image.SetReconstructedRGB(im, size, 1);
|
||
}
|
||
else // ƒmƒCƒY<C692>œ‹Ž‚ÆŠg‘å
|
||
{
|
||
ret = ReconstructNoiseScale(crop_w, crop_h, use_tta, batch_size, cancel_func, image);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
Factor /= mNoiseNet->GetInnerScale();
|
||
}
|
||
}
|
||
|
||
if (cancel_func && cancel_func())
|
||
return Waifu2x::eWaifu2xError_Cancel;
|
||
|
||
const int scaleNum = ceil(log(Factor) / log(ScaleBase));
|
||
|
||
if (isReconstructScale)
|
||
{
|
||
for (int i = 0; i < scaleNum; i++)
|
||
{
|
||
ret = ReconstructScale(crop_w, crop_h, use_tta, batch_size, cancel_func, image);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
return Waifu2x::eWaifu2xError_OK;
|
||
}
|
||
|
||
Waifu2x::eWaifu2xError Waifu2x::ReconstructScale(const int crop_w, const int crop_h, const bool use_tta, const int batch_size,
|
||
const Waifu2x::waifu2xCancelFunc cancel_func, stImage &image)
|
||
{
|
||
Waifu2x::eWaifu2xError ret;
|
||
|
||
if (image.HasAlpha())
|
||
{
|
||
cv::Mat im;
|
||
cv::Size_<int> size;
|
||
image.GetScalePaddingedA(im, size, mScaleNet->GetNetOffset(), OuterPadding, crop_w, crop_h, mScaleNet->GetScale() / mScaleNet->GetInnerScale());
|
||
|
||
ret = ReconstructByNet(mScaleNet, crop_w, crop_h, use_tta, batch_size, cancel_func, im);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
image.SetReconstructedA(im, size, mScaleNet->GetInnerScale());
|
||
}
|
||
|
||
cv::Mat im;
|
||
cv::Size_<int> size;
|
||
image.GetScalePaddingedRGB(im, size, mScaleNet->GetNetOffset(), OuterPadding, crop_w, crop_h, mScaleNet->GetScale() / mScaleNet->GetInnerScale());
|
||
|
||
ret = ReconstructByNet(mScaleNet, crop_w, crop_h, use_tta, batch_size, cancel_func, im);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
image.SetReconstructedRGB(im, size, mScaleNet->GetInnerScale());
|
||
|
||
return Waifu2x::eWaifu2xError_OK;
|
||
}
|
||
|
||
Waifu2x::eWaifu2xError Waifu2x::ReconstructNoiseScale(const int crop_w, const int crop_h, const bool use_tta, const int batch_size,
|
||
const Waifu2x::waifu2xCancelFunc cancel_func, stImage &image)
|
||
{
|
||
Waifu2x::eWaifu2xError ret;
|
||
|
||
if (image.HasAlpha())
|
||
{
|
||
// ƒ¿ƒ`ƒƒƒ“ƒlƒ‹‚ɂ̓mƒCƒY<C692>œ‹Ž‚ð<E2809A>s‚í‚È‚¢
|
||
|
||
cv::Mat im;
|
||
cv::Size_<int> size;
|
||
image.GetScalePaddingedA(im, size, mScaleNet->GetNetOffset(), OuterPadding, crop_w, crop_h, mScaleNet->GetScale() / mScaleNet->GetInnerScale());
|
||
|
||
ret = ReconstructByNet(mScaleNet, crop_w, crop_h, use_tta, batch_size, cancel_func, im);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
image.SetReconstructedA(im, size, mScaleNet->GetInnerScale());
|
||
}
|
||
|
||
cv::Mat im;
|
||
cv::Size_<int> size;
|
||
image.GetScalePaddingedRGB(im, size, mNoiseNet->GetNetOffset(), OuterPadding, crop_w, crop_h, mNoiseNet->GetScale() / mNoiseNet->GetInnerScale());
|
||
|
||
ret = ReconstructByNet(mNoiseNet, crop_w, crop_h, use_tta, batch_size, cancel_func, im);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
image.SetReconstructedRGB(im, size, mNoiseNet->GetInnerScale());
|
||
|
||
return Waifu2x::eWaifu2xError_OK;
|
||
}
|
||
|
||
|
||
Waifu2x::eWaifu2xError Waifu2x::ReconstructByNet(std::shared_ptr<cNet> net, const int crop_w, const int crop_h, const bool use_tta, const int batch_size,
|
||
const Waifu2x::waifu2xCancelFunc cancel_func, cv::Mat &im)
|
||
{
|
||
Waifu2x::eWaifu2xError ret;
|
||
|
||
if (!use_tta) // •<>’Ê‚É<E2809A>ˆ—<CB86>
|
||
{
|
||
ret = ProcessNet(net, crop_w, crop_h, use_tta, batch_size, im);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
}
|
||
else // Test-Time Augmentation Mode
|
||
{
|
||
const auto RotateClockwise90 = [](cv::Mat &mat)
|
||
{
|
||
cv::transpose(mat, mat);
|
||
cv::flip(mat, mat, 1);
|
||
};
|
||
|
||
const auto RotateClockwise90N = [RotateClockwise90](cv::Mat &mat, const int rotateNum)
|
||
{
|
||
for (int i = 0; i < rotateNum; i++)
|
||
RotateClockwise90(mat);
|
||
};
|
||
|
||
const auto RotateCounterclockwise90 = [](cv::Mat &mat)
|
||
{
|
||
cv::transpose(mat, mat);
|
||
cv::flip(mat, mat, 0);
|
||
};
|
||
|
||
const auto RotateCounterclockwise90N = [RotateCounterclockwise90](cv::Mat &mat, const int rotateNum)
|
||
{
|
||
for (int i = 0; i < rotateNum; i++)
|
||
RotateCounterclockwise90(mat);
|
||
};
|
||
|
||
cv::Mat reconstruct_image;
|
||
for (int i = 0; i < 8; i++)
|
||
{
|
||
cv::Mat in(im.clone());
|
||
|
||
const int rotateNum = i % 4;
|
||
RotateClockwise90N(in, rotateNum);
|
||
|
||
if (i >= 4)
|
||
cv::flip(in, in, 1); // <20>‚’¼Ž²”½“]
|
||
|
||
ret = ProcessNet(net, crop_w, crop_h, use_tta, batch_size, in);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
if (i >= 4)
|
||
cv::flip(in, in, 1); // <20>‚’¼Ž²”½“]
|
||
|
||
RotateCounterclockwise90N(in, rotateNum);
|
||
|
||
if (i == 0)
|
||
reconstruct_image = in;
|
||
else
|
||
reconstruct_image += in;
|
||
}
|
||
|
||
reconstruct_image /= 8.0;
|
||
|
||
im = reconstruct_image;
|
||
}
|
||
|
||
return Waifu2x::eWaifu2xError_OK;
|
||
}
|
||
|
||
Waifu2x::eWaifu2xError Waifu2x::ProcessNet(std::shared_ptr<cNet> net, const int crop_w, const int crop_h, const bool use_tta, const int batch_size, cv::Mat &im)
|
||
{
|
||
Waifu2x::eWaifu2xError ret;
|
||
|
||
CudaDeviceSet devset(mProcess, mGPUNo);
|
||
|
||
const auto OutputMemorySize = net->GetOutputMemorySize(crop_w, crop_h, OuterPadding, batch_size);
|
||
if (OutputMemorySize > mOutputBlockSize)
|
||
{
|
||
if (mIsCuda)
|
||
{
|
||
CUDA_HOST_SAFE_FREE(mOutputBlock);
|
||
CUDA_CHECK_WAIFU2X(cudaHostAlloc(&mOutputBlock, OutputMemorySize, cudaHostAllocDefault));
|
||
}
|
||
else
|
||
{
|
||
SAFE_DELETE_WAIFU2X(mOutputBlock);
|
||
mOutputBlock = new float[OutputMemorySize];
|
||
}
|
||
|
||
mOutputBlockSize = OutputMemorySize;
|
||
}
|
||
|
||
ret = net->ReconstructImage(use_tta, crop_w, crop_h, OuterPadding, batch_size, mOutputBlock, im, im);
|
||
if (ret != Waifu2x::eWaifu2xError_OK)
|
||
return ret;
|
||
|
||
return Waifu2x::eWaifu2xError_OK;
|
||
}
|
||
|
||
void Waifu2x::Destroy()
|
||
{
|
||
CudaDeviceSet devset(mProcess, mGPUNo);
|
||
|
||
mNoiseNet.reset();
|
||
mScaleNet.reset();
|
||
|
||
if (mIsCuda)
|
||
{
|
||
CUDA_HOST_SAFE_FREE(mOutputBlock);
|
||
}
|
||
else
|
||
{
|
||
SAFE_DELETE_WAIFU2X(mOutputBlock);
|
||
}
|
||
|
||
mIsInited = false;
|
||
}
|
||
|
||
const std::string& Waifu2x::used_process() const
|
||
{
|
||
return mProcess;
|
||
}
|
||
|
||
std::string Waifu2x::GetModelName(const boost::filesystem::path & model_dir)
|
||
{
|
||
const boost::filesystem::path mode_dir_path(GetModeDirPath(model_dir));
|
||
if (!boost::filesystem::exists(mode_dir_path))
|
||
return std::string();
|
||
|
||
const boost::filesystem::path info_path = mode_dir_path / "info.json";
|
||
|
||
return cNet::GetModelName(info_path);
|
||
}
|