mirror of
https://github.com/lltcggie/waifu2x-caffe.git
synced 2025-06-26 21:52:49 +00:00
905 lines
14 KiB
Plaintext
905 lines
14 KiB
Plaintext
name: "UpResNet10_3"
|
|
layer {
|
|
name: "data"
|
|
type: "Input"
|
|
top: "input"
|
|
input_param {
|
|
shape {
|
|
dim: 1
|
|
dim: 3
|
|
dim: 90
|
|
dim: 90
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/conv_pre"
|
|
type: "Convolution"
|
|
bottom: "input"
|
|
top: "/conv_pre"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 3
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/conv_pre_relu"
|
|
type: "ReLU"
|
|
bottom: "/conv_pre"
|
|
top: "/conv_pre_relu"
|
|
relu_param {
|
|
negative_slope: 0.1
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res1/conv1"
|
|
type: "Convolution"
|
|
bottom: "/conv_pre_relu"
|
|
top: "/res1/conv1"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 3
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res1/conv1_relu"
|
|
type: "ReLU"
|
|
bottom: "/res1/conv1"
|
|
top: "/res1/conv1_relu"
|
|
relu_param {
|
|
negative_slope: 0.1
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res1/conv2"
|
|
type: "Convolution"
|
|
bottom: "/res1/conv1_relu"
|
|
top: "/res1/conv2"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 3
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res1/conv2_relu"
|
|
type: "ReLU"
|
|
bottom: "/res1/conv2"
|
|
top: "/res1/conv2_relu"
|
|
relu_param {
|
|
negative_slope: 0.1
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res1/fc1_globalavgpool"
|
|
type: "Pooling"
|
|
bottom: "/res1/conv2_relu"
|
|
top: "/res1/fc1_globalavgpool"
|
|
pooling_param {
|
|
pool: AVE
|
|
stride: 1
|
|
pad: 0
|
|
engine: CAFFE
|
|
global_pooling: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res1/fc1"
|
|
type: "InnerProduct"
|
|
bottom: "/res1/fc1_globalavgpool"
|
|
top: "/res1/fc1"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
inner_product_param {
|
|
num_output: 16
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
bias_filler {
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res1/fc1_relu"
|
|
type: "ReLU"
|
|
bottom: "/res1/fc1"
|
|
top: "/res1/fc1_relu"
|
|
}
|
|
layer {
|
|
name: "/res1/fc2"
|
|
type: "InnerProduct"
|
|
bottom: "/res1/fc1_relu"
|
|
top: "/res1/fc2"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
inner_product_param {
|
|
num_output: 64
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
bias_filler {
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res1/fc2_sigmoid"
|
|
type: "Sigmoid"
|
|
bottom: "/res1/fc2"
|
|
top: "/res1/fc2_sigmoid"
|
|
}
|
|
layer {
|
|
name: "/res1/crop"
|
|
type: "CropCenter"
|
|
bottom: "/conv_pre_relu"
|
|
top: "/res1/crop"
|
|
crop_center_param {
|
|
crop_size: 0
|
|
crop_size: 0
|
|
crop_size: 2
|
|
crop_size: 2
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res1/axpy"
|
|
type: "Axpy"
|
|
bottom: "/res1/fc2_sigmoid"
|
|
bottom: "/res1/conv2_relu"
|
|
bottom: "/res1/crop"
|
|
top: "/res1/axpy"
|
|
}
|
|
layer {
|
|
name: "/res2/conv1"
|
|
type: "Convolution"
|
|
bottom: "/res1/axpy"
|
|
top: "/res2/conv1"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 3
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res2/conv1_relu"
|
|
type: "ReLU"
|
|
bottom: "/res2/conv1"
|
|
top: "/res2/conv1_relu"
|
|
relu_param {
|
|
negative_slope: 0.1
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res2/conv2"
|
|
type: "Convolution"
|
|
bottom: "/res2/conv1_relu"
|
|
top: "/res2/conv2"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 3
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res2/conv2_relu"
|
|
type: "ReLU"
|
|
bottom: "/res2/conv2"
|
|
top: "/res2/conv2_relu"
|
|
relu_param {
|
|
negative_slope: 0.1
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res2/fc1_globalavgpool"
|
|
type: "Pooling"
|
|
bottom: "/res2/conv2_relu"
|
|
top: "/res2/fc1_globalavgpool"
|
|
pooling_param {
|
|
pool: AVE
|
|
stride: 1
|
|
pad: 0
|
|
engine: CAFFE
|
|
global_pooling: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res2/fc1"
|
|
type: "InnerProduct"
|
|
bottom: "/res2/fc1_globalavgpool"
|
|
top: "/res2/fc1"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
inner_product_param {
|
|
num_output: 16
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
bias_filler {
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res2/fc1_relu"
|
|
type: "ReLU"
|
|
bottom: "/res2/fc1"
|
|
top: "/res2/fc1_relu"
|
|
}
|
|
layer {
|
|
name: "/res2/fc2"
|
|
type: "InnerProduct"
|
|
bottom: "/res2/fc1_relu"
|
|
top: "/res2/fc2"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
inner_product_param {
|
|
num_output: 64
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
bias_filler {
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res2/fc2_sigmoid"
|
|
type: "Sigmoid"
|
|
bottom: "/res2/fc2"
|
|
top: "/res2/fc2_sigmoid"
|
|
}
|
|
layer {
|
|
name: "/res2/crop"
|
|
type: "CropCenter"
|
|
bottom: "/res1/axpy"
|
|
top: "/res2/crop"
|
|
crop_center_param {
|
|
crop_size: 0
|
|
crop_size: 0
|
|
crop_size: 2
|
|
crop_size: 2
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res2/axpy"
|
|
type: "Axpy"
|
|
bottom: "/res2/fc2_sigmoid"
|
|
bottom: "/res2/conv2_relu"
|
|
bottom: "/res2/crop"
|
|
top: "/res2/axpy"
|
|
}
|
|
layer {
|
|
name: "/res3/conv1"
|
|
type: "Convolution"
|
|
bottom: "/res2/axpy"
|
|
top: "/res3/conv1"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 3
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res3/conv1_relu"
|
|
type: "ReLU"
|
|
bottom: "/res3/conv1"
|
|
top: "/res3/conv1_relu"
|
|
relu_param {
|
|
negative_slope: 0.1
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res3/conv2"
|
|
type: "Convolution"
|
|
bottom: "/res3/conv1_relu"
|
|
top: "/res3/conv2"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 3
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res3/conv2_relu"
|
|
type: "ReLU"
|
|
bottom: "/res3/conv2"
|
|
top: "/res3/conv2_relu"
|
|
relu_param {
|
|
negative_slope: 0.1
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res3/fc1_globalavgpool"
|
|
type: "Pooling"
|
|
bottom: "/res3/conv2_relu"
|
|
top: "/res3/fc1_globalavgpool"
|
|
pooling_param {
|
|
pool: AVE
|
|
stride: 1
|
|
pad: 0
|
|
engine: CAFFE
|
|
global_pooling: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res3/fc1"
|
|
type: "InnerProduct"
|
|
bottom: "/res3/fc1_globalavgpool"
|
|
top: "/res3/fc1"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
inner_product_param {
|
|
num_output: 16
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
bias_filler {
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res3/fc1_relu"
|
|
type: "ReLU"
|
|
bottom: "/res3/fc1"
|
|
top: "/res3/fc1_relu"
|
|
}
|
|
layer {
|
|
name: "/res3/fc2"
|
|
type: "InnerProduct"
|
|
bottom: "/res3/fc1_relu"
|
|
top: "/res3/fc2"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
inner_product_param {
|
|
num_output: 64
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
bias_filler {
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res3/fc2_sigmoid"
|
|
type: "Sigmoid"
|
|
bottom: "/res3/fc2"
|
|
top: "/res3/fc2_sigmoid"
|
|
}
|
|
layer {
|
|
name: "/res3/crop"
|
|
type: "CropCenter"
|
|
bottom: "/res2/axpy"
|
|
top: "/res3/crop"
|
|
crop_center_param {
|
|
crop_size: 0
|
|
crop_size: 0
|
|
crop_size: 2
|
|
crop_size: 2
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res3/axpy"
|
|
type: "Axpy"
|
|
bottom: "/res3/fc2_sigmoid"
|
|
bottom: "/res3/conv2_relu"
|
|
bottom: "/res3/crop"
|
|
top: "/res3/axpy"
|
|
}
|
|
layer {
|
|
name: "/res4/conv1"
|
|
type: "Convolution"
|
|
bottom: "/res3/axpy"
|
|
top: "/res4/conv1"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 3
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res4/conv1_relu"
|
|
type: "ReLU"
|
|
bottom: "/res4/conv1"
|
|
top: "/res4/conv1_relu"
|
|
relu_param {
|
|
negative_slope: 0.1
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res4/conv2"
|
|
type: "Convolution"
|
|
bottom: "/res4/conv1_relu"
|
|
top: "/res4/conv2"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 3
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res4/conv2_relu"
|
|
type: "ReLU"
|
|
bottom: "/res4/conv2"
|
|
top: "/res4/conv2_relu"
|
|
relu_param {
|
|
negative_slope: 0.1
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res4/fc1_globalavgpool"
|
|
type: "Pooling"
|
|
bottom: "/res4/conv2_relu"
|
|
top: "/res4/fc1_globalavgpool"
|
|
pooling_param {
|
|
pool: AVE
|
|
stride: 1
|
|
pad: 0
|
|
engine: CAFFE
|
|
global_pooling: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res4/fc1"
|
|
type: "InnerProduct"
|
|
bottom: "/res4/fc1_globalavgpool"
|
|
top: "/res4/fc1"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
inner_product_param {
|
|
num_output: 16
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
bias_filler {
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res4/fc1_relu"
|
|
type: "ReLU"
|
|
bottom: "/res4/fc1"
|
|
top: "/res4/fc1_relu"
|
|
}
|
|
layer {
|
|
name: "/res4/fc2"
|
|
type: "InnerProduct"
|
|
bottom: "/res4/fc1_relu"
|
|
top: "/res4/fc2"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
inner_product_param {
|
|
num_output: 64
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
bias_filler {
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res4/fc2_sigmoid"
|
|
type: "Sigmoid"
|
|
bottom: "/res4/fc2"
|
|
top: "/res4/fc2_sigmoid"
|
|
}
|
|
layer {
|
|
name: "/res4/crop"
|
|
type: "CropCenter"
|
|
bottom: "/res3/axpy"
|
|
top: "/res4/crop"
|
|
crop_center_param {
|
|
crop_size: 0
|
|
crop_size: 0
|
|
crop_size: 2
|
|
crop_size: 2
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res4/axpy"
|
|
type: "Axpy"
|
|
bottom: "/res4/fc2_sigmoid"
|
|
bottom: "/res4/conv2_relu"
|
|
bottom: "/res4/crop"
|
|
top: "/res4/axpy"
|
|
}
|
|
layer {
|
|
name: "/res5/conv1"
|
|
type: "Convolution"
|
|
bottom: "/res4/axpy"
|
|
top: "/res5/conv1"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 3
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res5/conv1_relu"
|
|
type: "ReLU"
|
|
bottom: "/res5/conv1"
|
|
top: "/res5/conv1_relu"
|
|
relu_param {
|
|
negative_slope: 0.1
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res5/conv2"
|
|
type: "Convolution"
|
|
bottom: "/res5/conv1_relu"
|
|
top: "/res5/conv2"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 3
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res5/conv2_relu"
|
|
type: "ReLU"
|
|
bottom: "/res5/conv2"
|
|
top: "/res5/conv2_relu"
|
|
relu_param {
|
|
negative_slope: 0.1
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res5/fc1_globalavgpool"
|
|
type: "Pooling"
|
|
bottom: "/res5/conv2_relu"
|
|
top: "/res5/fc1_globalavgpool"
|
|
pooling_param {
|
|
pool: AVE
|
|
stride: 1
|
|
pad: 0
|
|
engine: CAFFE
|
|
global_pooling: true
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res5/fc1"
|
|
type: "InnerProduct"
|
|
bottom: "/res5/fc1_globalavgpool"
|
|
top: "/res5/fc1"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
inner_product_param {
|
|
num_output: 16
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
bias_filler {
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res5/fc1_relu"
|
|
type: "ReLU"
|
|
bottom: "/res5/fc1"
|
|
top: "/res5/fc1_relu"
|
|
}
|
|
layer {
|
|
name: "/res5/fc2"
|
|
type: "InnerProduct"
|
|
bottom: "/res5/fc1_relu"
|
|
top: "/res5/fc2"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
inner_product_param {
|
|
num_output: 64
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
bias_filler {
|
|
value: 0
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res5/fc2_sigmoid"
|
|
type: "Sigmoid"
|
|
bottom: "/res5/fc2"
|
|
top: "/res5/fc2_sigmoid"
|
|
}
|
|
layer {
|
|
name: "/res5/crop"
|
|
type: "CropCenter"
|
|
bottom: "/res4/axpy"
|
|
top: "/res5/crop"
|
|
crop_center_param {
|
|
crop_size: 0
|
|
crop_size: 0
|
|
crop_size: 2
|
|
crop_size: 2
|
|
}
|
|
}
|
|
layer {
|
|
name: "/res5/axpy"
|
|
type: "Axpy"
|
|
bottom: "/res5/fc2_sigmoid"
|
|
bottom: "/res5/conv2_relu"
|
|
bottom: "/res5/crop"
|
|
top: "/res5/axpy"
|
|
}
|
|
layer {
|
|
name: "/conv_bridge"
|
|
type: "Convolution"
|
|
bottom: "/res5/axpy"
|
|
top: "/conv_bridge"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
param {
|
|
lr_mult: 2
|
|
decay_mult: 0
|
|
}
|
|
convolution_param {
|
|
num_output: 64
|
|
bias_term: true
|
|
pad: 0
|
|
kernel_size: 3
|
|
stride: 1
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|
|
layer {
|
|
name: "/conv_bridge_relu"
|
|
type: "ReLU"
|
|
bottom: "/conv_bridge"
|
|
top: "/conv_bridge_relu"
|
|
relu_param {
|
|
negative_slope: 0.1
|
|
}
|
|
}
|
|
layer {
|
|
name: "/crop"
|
|
type: "CropCenter"
|
|
bottom: "/conv_pre_relu"
|
|
top: "/crop"
|
|
crop_center_param {
|
|
crop_size: 0
|
|
crop_size: 0
|
|
crop_size: 11
|
|
crop_size: 11
|
|
}
|
|
}
|
|
layer {
|
|
name: "/add"
|
|
type: "Eltwise"
|
|
bottom: "/conv_bridge_relu"
|
|
bottom: "/crop"
|
|
top: "/add"
|
|
}
|
|
layer {
|
|
name: "/conv_post"
|
|
type: "Deconvolution"
|
|
bottom: "/add"
|
|
top: "/conv_post"
|
|
param {
|
|
lr_mult: 1
|
|
decay_mult: 1
|
|
}
|
|
convolution_param {
|
|
num_output: 3
|
|
bias_term: false
|
|
pad: 3
|
|
kernel_size: 4
|
|
stride: 2
|
|
weight_filler {
|
|
type: "msra"
|
|
}
|
|
}
|
|
}
|